2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Kaposi's Sarcoma-Associated Herpesvirus ORF7 Is Essential for Virus Production.

  • Yuki Iwaisako‎ et al.
  • Microorganisms‎
  • 2021‎

Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman disease. Although capsid formation and maturation in the alpha-herpesvirus herpes simplex virus 1 are well understood, these processes in KSHV remain unknown. The KSHV ORF7, encoding the viral terminase (DNA cleavage and packaging protein), is thought to contribute to capsid formation; however, functional information is lacking. Here, we investigated the role of ORF7 during KSHV lytic replication by generating two types of ORF7 knock-out (KO) mutants (frameshift-induced and stop codon-induced ORF7 deficiency), KSHV BAC16, and its revertants. The results revealed that both ORF7-KO KSHVs showed significantly reduced viral production but there was no effect on lytic gene expression and viral genome replication. Complementation assays showed virus production from cells harboring ORF7-KO KSHV could be recovered by ORF7 overexpression. Additionally, exogenously expressed ORF7 partially induced nuclear relocalization of the other terminase components, ORF29 and ORF67.5. ORF7 interacted with both ORF29 and ORF67.5, whereas ORF29 and ORF67.5 failed to interact with each other, suggesting that ORF7 functions as a hub molecule in the KSHV terminase complex for interactions between ORF29 and ORF67.5. These findings indicate that ORF7 plays a key role in viral replication, as a component of terminase.


Kaposi's sarcoma-associated herpesvirus ORF17 plays a key role in capsid maturation.

  • Sayaka Tsurumi‎ et al.
  • Virology‎
  • 2021‎

Kaposi's sarcoma-associated herpesvirus is a human rhadinovirus of the gammaherpesvirus sub-family. Although herpesviruses are well-studied models of capsid formation and its processes, those of KSHV remain unknown. KSHV ORF17 encoding the viral protease precursor (ORF17-prePR) is thought to contribute to capsid formation; however, functional information is largely unknown. Here, we evaluated the role of ORF17 during capsid formation by generating ORF17-deficient and ORF17 protease-dead KSHV. Both mutants showed a decrease in viral production but not DNA replication. ORF17 R-mut, with a point-mutation at the restriction or release site (R-site) by which ORF17-prePR can be functionally cleaved into a protease (ORF17-PR) and an assembly region (ORF17-pAP/-AP), failed to play a role in viral production. Furthermore, wild type KSHV produced a mature capsid, whereas ORF17-deficient and protease-dead KSHV produced a B-capsid, (i.e., a closed body possessing a circular inner structure). Therefore, ORF17 and its protease function are essential for appropriate capsid maturation.


Kaposi's Sarcoma-Associated Herpesvirus ORF67.5 Functions as a Component of the Terminase Complex.

  • Yuki Iwaisako‎ et al.
  • Journal of virology‎
  • 2023‎

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA (dsDNA) gammaherpesvirus with a poorly characterized lytic replication cycle. However, the lytic replication cycle of the alpha- and betaherpesviruses are well characterized. During lytic infection of alpha- and betaherpesviruses, the viral genome is replicated as a precursor form, which contains tandem genomes linked via terminal repeats (TRs). One genomic unit of the precursor form is packaged into a capsid and is cleaved at the TR by the terminase complex. While the alpha- and betaherpesvirus terminases are well characterized, the KSHV terminase remains poorly understood. KSHV open reading frame 7 (ORF7), ORF29, and ORF67.5 are presumed to be components of the terminase complex based on their homology to other terminase proteins. We previously reported that ORF7-deficient KSHV formed numerous immature soccer ball-like capsids and failed to cleave the TRs. ORF7 interacted with ORF29 and ORF67.5; however, ORF29 and ORF67.5 did not interact with each other. While these results suggested that ORF7 is important for KSHV terminase function and capsid formation, the function of ORF67.5 was completely unknown. Therefore, to analyze the function of ORF67.5, we constructed ORF67.5-deficient BAC16. ORF67.5-deficient KSHV failed to produce infectious virus and cleave the TRs, and numerous soccer ball-like capsids were observed in ORF67.5-deficient KSHV-harboring cells. Furthermore, ORF67.5 promoted the interaction between ORF7 and ORF29, and ORF29 increased the interaction between ORF67.5 and ORF7. Thus, our data indicated that ORF67.5 functions as a component of the KSHV terminase complex by contributing to TR cleavage, terminase complex formation, capsid formation, and virus production. IMPORTANCE Although the formation and function of the alpha- and betaherpesvirus terminase complexes are well understood, the Kaposi's sarcoma-associated herpesvirus (KSHV) terminase complex is still largely uncharacterized. This complex presumably contains KSHV open reading frame 7 (ORF7), ORF29, and ORF67.5. We were the first to report the presence of soccer ball-like capsids in ORF7-deficient KSHV-harboring lytic-induced cells. Here, we demonstrated that ORF67.5-deficient KSHV also formed soccer ball-like capsids in lytic-induced cells. Moreover, ORF67.5 was required for terminal repeat (TR) cleavage, infectious virus production, and enhancement of the interaction between ORF7 and ORF29. ORF67.5 has several highly conserved regions among its human herpesviral homologs. These regions were necessary for virus production and for the interaction of ORF67.5 with ORF7, which was supported by the artificial intelligence (AI)-predicted structure model. Importantly, our results provide the first evidence showing that ORF67.5 is essential for terminase complex formation and TR cleavage.


Kaposi's sarcoma-associated herpesvirus ORF34 is essential for late gene expression and virus production.

  • Mayu Nishimura‎ et al.
  • Scientific reports‎
  • 2017‎

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. KSHV establishes a life-long infection in its host and alternates between a latent and lytic infection state. During lytic infection, lytic-related genes are expressed in a temporal manner and categorized as immediate early, early, and late gene transcripts. ORF34 is an early-late gene that interacts with several viral transcription-associated factors, however its physiological importance remains poorly understood. Here, we investigated the role of ORF34 during KSHV infection by generating ORF34-deficient KSHV, using a bacterial artificial chromosome system. Our results reveal that ORF34-deficient KSHV exhibited significantly attenuated late gene expression and viral production but did not affect viral DNA replication. ORF34 interacted with transcription factors ORF18, ORF24, ORF31, and ORF66, and a novel ORF34-interaction partner, ORF23. The C-terminal region of ORF34 was important for interaction with ORF24 and viral production. Our data support a model, in which ORF34 serves as a hub for recruiting a viral transcription complex to ORF24 to promote late viral gene expression.


Kaposi's Sarcoma-Associated Herpesvirus ORF21 Enhances the Phosphorylation of MEK and the Infectivity of Progeny Virus.

  • Tatsuo Yamaguchi‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causative agent of Kaposi's sarcoma, Castleman's disease, and primary effusion lymphoma. Although the functions of the viral thymidine kinases (vTK) of herpes simplex virus-1/2 are well understood, that of KSHV ORF21 (an ortholog of vTK) is largely unknown. Here, we investigated the role of ORF21 in lytic replication and infection by generating two ORF21-mutated KSHV BAC clones: ORF21-kinase activity deficient KSHV (21KD) and stop codon-induced ORF21-deleted KSHV (21del). The results showed that both ORF21 mutations did not affect viral genome replication, lytic gene transcription, or the production of viral genome-encapsidated particles. The ORF21 molecule-dependent function, other than the kinase function of ORF21, was involved in the infectivity of the progeny virus. ORF21 was expressed 36 h after the induction of lytic replication, and endogenously expressed ORF21 was localized in the whole cytoplasm. Moreover, ORF21 upregulated the MEK phosphorylation and anchorage-independent cell growth. The inhibition of MEK signaling by U0126 in recipient target cells suppressed the number of progeny virus-infected cells. These suggest that ORF21 transmitted as a tegument protein in the progeny virus enhances the new infection through MEK up-regulation in the recipient cell. Our findings indicate that ORF21 plays key roles in the infection of KSHV through the manipulation of the cellular function.


Biomolecular Fluorescence Complementation Profiling and Artificial Intelligence Structure Prediction of the Kaposi's Sarcoma-Associated Herpesvirus ORF18 and ORF30 Interaction.

  • Yoshiko Maeda‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. During KSHV lytic infection, lytic-related genes, categorized as immediate-early, early, and late genes, are expressed in a temporal manner. The transcription of late genes requires the virus-specific pre-initiation complex (vPIC), which consists of viral transcription factors. However, the protein-protein interactions of the vPIC factors have not been completely elucidated. KSHV ORF18 is one of the vPIC factors, and its interaction with other viral proteins has not been sufficiently revealed. In order to clarify these issues, we analyzed the interaction between ORF18 and another vPIC factor, ORF30, in living cells using the bimolecular fluorescence complementation (BiFC) assay. We identified four amino-acid residues (Leu29, Glu36, His41, and Trp170) of ORF18 that were responsible for its interaction with ORF30. Pull-down assays also showed that these four residues were required for the ORF18-ORF30 interaction. The artificial intelligence (AI) system AlphaFold2 predicted that the identified four residues are localized on the surface of ORF18 and are in proximity to each other. Thus, our AI-predicted model supports the importance of the four residues for binding ORF18 to ORF30. These results indicated that wet experiments in combination with AI may enhance the structural characterization of vPIC protein-protein interactions.


The Contribution of Kaposi's Sarcoma-Associated Herpesvirus ORF7 and Its Zinc-Finger Motif to Viral Genome Cleavage and Capsid Formation.

  • Yuki Iwaisako‎ et al.
  • Journal of virology‎
  • 2022‎

During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic infection, lytic-related proteins are synthesized, viral genomes are replicated as a tandemly repeated form, and subsequently, capsids are assembled. The herpesvirus terminase complex is proposed to package an appropriate genome unit into an immature capsid, by cleavage of terminal repeats (TRs) flanking tandemly linked viral genomes. Although the mechanism of capsid formation in alpha- and betaherpesviruses are well-studied, in KSHV, it remains largely unknown. It has been proposed that KSHV ORF7 is a terminase subunit, and ORF7 harbors a zinc-finger motif, which is conserved among other herpesviral terminases. However, the biological significance of ORF7 is unknown. We previously reported that KSHV ORF17 is essential for the cleavage of inner scaffold proteins in capsid maturation, and ORF17 knockout (KO) induced capsid formation arrest between the procapsid and B-capsid stages. However, it remains unknown if ORF7-mediated viral DNA cleavage occurs before or after ORF17-mediated scaffold collapse. We analyzed the role of ORF7 during capsid formation using ORF7-KO-, ORF7&17-double-KO (DKO)-, and ORF7-zinc-finger motif mutant-KSHVs. We found that ORF7 acted after ORF17 in the capsid formation process, and ORF7-KO-KSHV produced incomplete capsids harboring nonspherical internal structures, which resembled soccer balls. This soccer ball-like capsid was formed after ORF17-mediated B-capsid formation. Moreover, ORF7-KO- and zinc-finger motif KO-KSHV failed to appropriately cleave the TR on replicated genome and had a defect in virion production. Interestingly, ORF17 function was also necessary for TR cleavage. Thus, our data revealed ORF7 contributes to terminase-mediated viral genome cleavage and capsid formation. IMPORTANCE In herpesviral capsid formation, the viral terminase complex cleaves the TR sites on newly synthesized tandemly repeating genomes and inserts an appropriate genomic unit into an immature capsid. Herpes simplex virus 1 (HSV-1) UL28 is a subunit of the terminase complex that cleaves the replicated viral genome. However, the physiological importance of the UL28 homolog, KSHV ORF7, remains poorly understood. Here, using several ORF7-deficient KSHVs, we found that ORF7 acted after ORF17-mediated scaffold collapse in the capsid maturation process. Moreover, ORF7 and its zinc-finger motif were essential for both cleavage of TR sites on the KSHV genome and virus production. ORF7-deficient KSHVs produced incomplete capsids that resembled a soccer ball. To our knowledge, this is the first report showing ORF7-KO-induced soccer ball-like capsids production and ORF7 function in the KSHV capsid assembly process. Our findings provide insights into the role of ORF7 in KSHV capsid formation.


KSHV episomes reveal dynamic chromatin loop formation with domain-specific gene regulation.

  • Mel Campbell‎ et al.
  • Nature communications‎
  • 2018‎

The three-dimensional structure of chromatin organized by genomic loops facilitates RNA polymerase II access to distal promoters. The Kaposi's sarcoma-associated herpesvirus (KSHV) lytic transcriptional program is initiated by a single viral transactivator, K-Rta. Here we report the KSHV genomic structure and its relationship with K-Rta recruitment sites using Capture Hi-C analyses. High-resolution 3D viral genomic maps identify a number of direct physical, long-range, and dynamic genomic interactions. Mutant KSHV chromosomes harboring point mutations in the K-Rta responsive elements (RE) significantly attenuate not only the directly proximate downstream gene, but also distal gene expression in a domain-specific manner. Genomic loops increase in the presence of K-Rta, while abrogation of K-Rta binding impairs the formation of inducible genomic loops, decreases the expression of genes networked through the looping, and diminishes KSHV replication. Our study demonstrates that genomic architectural dynamics plays an essential role in herpesvirus gene expression.


A pyridinium‑type fullerene derivative suppresses primary effusion lymphoma cell viability via the downregulation of the Wnt signaling pathway through the destabilization of β‑catenin.

  • Ayano Kadota‎ et al.
  • Oncology reports‎
  • 2022‎

Primary effusion lymphoma (PEL) is defined as a rare subtype of non‑Hodgkin's B cell lymphoma, which is caused by Kaposi's sarcoma‑associated herpesvirus (KSHV) in immunosuppressed patients. PEL is an aggressive type of lymphoma and is frequently resistant to conventional chemotherapeutics. Therefore, the discovery of novel drug candidates for the treatment of PEL is of utmost importance. In order to discover potential novel anti‑tumor compounds against PEL, the authors previously developed a pyrrolidinium‑type fullerene derivative, 1,1,1',1'‑tetramethyl [60]fullerenodipyrrolidinium diiodide (derivative #1), which induced the apoptosis of PEL cells via caspase‑9 activation. In the present study, the growth inhibitory effects of pyrrolidinium‑type (derivatives #1 and #2), pyridinium‑type (derivatives #3 and #5 to #9) and anilinium‑type fullerene derivatives (derivative #4) against PEL cells were evaluated. This analysis revealed a pyridinium‑type derivative (derivative #5; 3‑​5'‑(etho xycarbonyl)‑1',5'‑dihydro‑2'H‑[5,6]fullereno‑C60‑Ih‑[1,9‑c]pyrrol‑2'‑yl]‑1‑methylpyridinium iodide), which exhibited antitumor activity against PEL cells via the downregulation of Wnt/β‑catenin signaling. Derivative #5 suppressed the viability of KSHV‑infected PEL cells compared with KSHV‑uninfected B‑lymphoma cells. Furthermore, derivative #5 induced the destabilization of β‑catenin and suppressed β‑catenin‑TCF4 transcriptional activity in PEL cells. It is known that the constitutive activation of Wnt/β‑catenin signaling is essential for the growth of KSHV‑infected cells. The Wnt/β‑catenin activation in KSHV‑infected cells is mediated by KSHV latency‑associated nuclear antigen (LANA). The data demonstrated that derivative #5 increased β‑catenin phosphorylation, which resulted in β‑catenin polyubiquitination and subsequent degradation. Thus, derivative #5 overcame LANA‑mediated β‑catenin stabilization. Furthermore, the administration of derivative #5 suppressed the development of PEL cells in the ascites of SCID mice with tumor xenografts derived from PEL cells. On the whole, these findings provide evidence that the pyridinium‑type fullerene derivative #5 exhibits antitumor activity against PEL cells in vitro and in vivo. Thus, derivative #5 may be utilized as a novel therapeutic agent for the treatment of PEL.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: