2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 732 papers

Hepatocyte nuclear factor 1 alpha influences pancreatic cancer growth and metastasis.

  • Ramadevi Subramani‎ et al.
  • Scientific reports‎
  • 2020‎

Hepatocyte nuclear factor 1 homeobox alpha (HNF1α) is a transcription factor involved in endodermal organogenesis and pancreatic precursor cell differentiation and development. Earlier studies have reported a role for HNF1α in pancreatic ductal adenocarcinoma (PDAC) but it is controversial. The mechanism by which it impacts PDAC is yet to be explored in depth. In this study, using the online databases we observed that HNF1α is upregulated in PDAC, which was also confirmed by our immunohistochemical analysis of PDAC tissue microarray. Silencing HNF1α reduced the proliferative, migratory, invasive and colony forming capabilities of pancreatic cancer cells. Key markers involved in these processes (pPI3K, pAKT, pERK, Bcl2, Zeb, Snail, Slug) were significantly changed in response to alterations in HNF1α expression. On the other hand, overexpression of HNF1α did not induce any significant change in the aggressiveness of pancreatic cancer cells. Our results demonstrate that reduced expression of HNF1α leads to inhibition of pancreatic cancer growth and progression, which indicates that it could be a potential oncogene and target for PDAC.


Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1 beta.

  • C Bingham‎ et al.
  • Kidney international‎
  • 2000‎

The transcription factor hepatocyte nuclear factor (HNF)-1 beta functions as a homodimer or as a heterodimer with the structurally related protein HNF-1 alpha. Both are expressed sequentially in rat kidney development, with HNF-1 beta being detected from the earliest inductory phases. HNF-1 beta gene mutations are associated with a unique disorder characterized by maturity-onset diabetes of the young (MODY) and early-onset and progressive nondiabetic renal dysfunction, which may lead to chronic renal failure.


Hepatocyte nuclear factor 1 coordinates multiple processes in a model of intestinal epithelial cell function.

  • Rui Yang‎ et al.
  • Biochimica et biophysica acta‎
  • 2016‎

Mutations in hepatocyte nuclear factor 1 transcription factors (HNF1α/β) are associated with diabetes. These factors are well studied in the liver, pancreas and kidney, where they direct tissue-specific gene regulation. However, they also have an important role in the biology of many other tissues, including the intestine. We investigated the transcriptional network governed by HNF1 in an intestinal epithelial cell line (Caco2). We used chromatin immunoprecipitation followed by direct sequencing (ChIP-seq) to identify HNF1 binding sites genome-wide. Direct targets of HNF1 were validated using conventional ChIP assays and confirmed by siRNA-mediated depletion of HNF1, followed by RT-qPCR. Gene ontology process enrichment analysis of the HNF1 targets identified multiple processes with a role in intestinal epithelial cell function, including properties of the cell membrane, cellular response to hormones, and regulation of biosynthetic processes. Approximately 50% of HNF1 binding sites were also occupied by other members of the intestinal transcriptional network, including hepatocyte nuclear factor 4A (HNF4A), caudal type homeobox 2 (CDX2), and forkhead box A2 (FOXA2). Depletion of HNF1 in Caco2 cells increases FOXA2 abundance and decreases levels of CDX2, illustrating the coordinated activities of the network. These data suggest that HNF1 plays an important role in regulating intestinal epithelial cell function, both directly and through interactions with other intestinal transcription factors.


Transcriptional Regulation of the Angptl8 Gene by Hepatocyte Nuclear Factor-1 in the Murine Liver.

  • Takuya Watanabe‎ et al.
  • Scientific reports‎
  • 2020‎

Brief refeeding times (~60 min) enhanced hepatic Angptl8 expression in fasted mice. We cloned the mouse Angptl8 promoter region to characterise this rapid refeeding-induced increase in hepatic Angptl8 expression. Deletion of the -309/-60 promoter region significantly attenuated basal promoter activity in hepatocytes. A computational motif search revealed a potential binding motif for hepatocyte nuclear factor 1α/1β (HNF-1α/β) at -84/-68 bp of the promoter. Mutation of the HNF-1 binding site significantly decreased the promoter activity in hepatocytes, and the promoter carrying the mutated HNF-1 site was not transactivated by co-transfection of HNF-1 in a non-hepatic cell line. Silencing Hnf-1 in hepatoma cells and mouse primary hepatocytes reduced Angptl8 protein levels. Electrophoretic mobility-shift assays confirmed direct binding of Hnf-1 to its Angptl8 promoter binding motif. Hnf-1α expression levels increased after short-term refeeding, paralleling the enhanced in vivo expression of the Angptl8 protein. Chromatin immunoprecipitation (ChIP) confirmed the recruitment of endogenous Hnf-1 to the Angptl8 promoter region. Insulin-treated primary hepatocytes showed increased expression of Angptl8 protein, but knockdown of Hnf-1 completely abolished this enhancement. HNF-1 appears to play essential roles in the rapid refeeding-induced increases in Angptl8 expression. HNF-1α may therefore represent a primary medical target for ANGPTL8-related metabolic abnormalities. The study revealed the transcriptional regulation of the mouse hepatic Angptl8 gene by HNF-1.


GIP and GLP-1 Potentiate Sulfonylurea-Induced Insulin Secretion in Hepatocyte Nuclear Factor 1α Mutation Carriers.

  • Alexander S Christensen‎ et al.
  • Diabetes‎
  • 2020‎

Sulfonylureas (SUs) provide an efficacious first-line treatment in patients with hepatocyte nuclear factor 1α (HNF1A) diabetes, but SUs have limitations due to risk of hypoglycemia. Treatment based on the incretin hormones glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide 1 (GLP-1) is characterized by their glucose-dependent insulinotropic actions without risk of hypoglycemia. The effect of SUs together with GIP or GLP-1, respectively, on insulin and glucagon secretion in patients with HNF1A diabetes is currently unknown. To investigate this, 10 HNF1A mutation carriers and 10 control subjects without diabetes were recruited for a double-blinded, placebo-controlled, crossover study including 6 experimental days in a randomized order involving 2-h euglycemic-hyperglycemic clamps with coadministration of: 1) SU (glimepiride 1 mg) or placebo, combined with 2) infusions of GIP (1.5 pmol/kg/min), GLP-1 (0.5 pmol/kg/min), or saline (NaCl). In HNF1A mutation carriers, we observed: 1) hypoinsulinemia, 2) insulinotropic effects of both GIP and GLP-1, 3) additive to supra-additive effects on insulin secretion when combining SU+GIP and SU+GLP-1, respectively, and 4) increased fasting and arginine-induced glucagon levels compared with control subjects without diabetes. Our study suggests that a combination of SU and incretin-based treatment may be efficacious in patients with HNF1A diabetes via potentiation of glucose-stimulated insulin secretion.


Hepatocyte nuclear factor 4α negatively regulates connective tissue growth factor during liver regeneration.

  • Junmei Zhou‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2020‎

Liver regeneration after injury requires fine-tune regulation of connective tissue growth factor (Ctgf). It also involves dynamic expression of hepatocyte nuclear factor (Hnf)4α, Yes-associated protein (Yap), and transforming growth factor (Tgf)-β. The upstream inducers of Ctgf, such as Yap, etc, are well-known. However, the negative regulator of Ctgf remains unclear. Here, we investigated the Hnf4α regulation of Ctgf post-various types of liver injury. Both wild-type animals and animals contained siRNA-mediated Hnf4α knockdown and Cre-mediated Ctgf conditional deletion were used. We observed that Ctgf induction was associated with Hnf4α decline, nuclear Yap accumulation, and Tgf-β upregulation during early stage of liver regeneration. The Ctgf promoter contained an Hnf4α binding sequence that overlapped with the cis-regulatory element for Yap and Tgf-β. Ctgf loss attenuated inflammation, hepatocyte proliferation, and collagen synthesis, whereas Hnf4α knockdown enhanced Ctgf induction and liver fibrogenesis. These findings provided a new mechanism about fine-tuned regulation of Ctgf through Hnf4α antagonism of Yap and Tgf-β activities to balance regenerative and fibrotic signals.


Enhancement of CYP3A4 activity in Hep G2 cells by lentiviral transfection of hepatocyte nuclear factor-1 alpha.

  • Tsai-Shin Chiang‎ et al.
  • PloS one‎
  • 2014‎

Human hepatoma cell lines are commonly used as alternatives to primary hepatocytes for the study of drug metabolism in vitro. However, the phase I cytochrome P450 (CYP) enzyme activities in these cell lines occur at a much lower level than their corresponding activities in primary hepatocytes, and thus these cell lines may not accurately predict drug metabolism. In the present study, we selected hepatocyte nuclear factor-1 alpha (HNF1α) from six transcriptional regulators for lentiviral transfection into Hep G2 cells to optimally increase their expression of the CYP3A4 enzyme, which is the major CYP enzyme in the human body. We subsequently found that HNF1α-transfected Hep G2 enhanced the CYP3A4 expression in a time- and dose-dependent manner and the activity was noted to increase with time and peaked 7 days. With a multiplicity of infection (MOI) of 100, CYP3A4 expression increased 19-fold and enzyme activity more than doubled at day 7. With higher MOI (1,000 to 3,000), the activity increased 8- to 10-fold; however, it was noted the higher MOI, the higher cell death rate and lower cell survival. Furthermore, the CYP3A4 activity in the HNF1α-transfected cells could be induced by CYP3A4-specific inducer, rifampicin, and metabolized nifedipine in a dose-dependent manner. With an MOI of 3,000, nifedipine-metabolizing activity was 6-fold of control and as high as 66% of primary hepatocytes. In conclusion, forceful delivery of selected transcriptional regulators into human hepatoma cells might be a valuable method to enhance the CYP activity for a more accurate determination of drug metabolism in vitro.


Polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 alpha are associated with C-reactive protein.

  • Alexander P Reiner‎ et al.
  • American journal of human genetics‎
  • 2008‎

Data from the Pharmacogenomics and Risk of Cardiovascular Disease (PARC) study and the Cardiovascular Health Study (CHS) provide independent and confirmatory evidence for association between common polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 alpha and plasma C-reactive protein (CRP) concentration. Analyses with the use of imputation-based methods to combine genotype data from both studies and to test untyped SNPs from the HapMap database identified several SNPs within a 5 kb region of HNF1A intron 1 with the strongest evidence of association with CRP phenotype.


Apoptosis signal-regulating kinase 1 mediates the inhibitory effect of hepatocyte nuclear factor-4α on hepatocellular carcinoma.

  • Cai-Feng Jiang‎ et al.
  • Oncotarget‎
  • 2016‎

Previous studies provided substantial evidence of a striking suppressive effect of hepatocyte nuclear factor 4α (HNF4α) on hepatocellular carcinoma (HCC). Apoptosis signal-regulating kinase 1 (ASK1) is involved in death receptor-mediated apoptosis and may acts as a tumor suppressor in hepatocarcinogenesis. However, the status and function of ASK1 during HCC progression are unclear. In this study, we found that HNF4α increased ASK1 expression by directly binding to its promoter. ASK1 expression was dramatically suppressed and correlated with HNF4α levels in HCC tissues. Reduced ASK1 expression was associated with aggressive tumors and poor prognosis for human HCC. Moreover, ASK1 inhibited the malignant phenotype of HCC cells in vitro. Intratumoral ASK1 injection significantly suppressed the growth of subcutaneous HCC xenografts in nude mice. More interestingly, systemic ASK1 delivery strikingly inhibited the growth of orthotopic HCC nodules in NOD/SCID mice. In addition, inhibition of endogenous ASK1 partially reversed the suppressive effects of HNF4α on HCC. Collectively, this study highlights the suppressive effect of ASK1 on HCC and its biological significance in HCC development. These outcomes broaden the knowledge of ASK1 function in HCC progression, and provide a novel potential prognostic biomarker and therapeutic target for advanced HCC.


TRIB1 is a positive regulator of hepatocyte nuclear factor 4-alpha.

  • Sébastien Soubeyrand‎ et al.
  • Scientific reports‎
  • 2017‎

The TRIB1 locus has been linked to both cardiovascular disease and hepatic steatosis. Recent efforts have revealed TRIB1 to be a major regulator of liver function, largely, but not exclusively, via CEBPA degradation. We recently uncovered a functional interaction between TRIB1 and HNF4A, another key regulator of hepatic function, whose molecular underpinnings remained to be clarified. Here we have extended these findings. In hepatoma models, HNF4A levels were found to depend on TRIB1, independently of its impact on CEBPA. Using a reporter assay model, MTTP reporter activity, which depends on HNF4A, positively correlated with TRIB1 levels. Confocal microscopy demonstrated partial colocalization of TRIB1 and HNF4A. Using overexpressed proteins we demonstrate that TRIB1 and HNF4A can form complexes in vivo. Mapping of the interaction interfaces identified two distinct regions within TRIB1 which associated with the N-terminal region of HNF4A. Lastly, the TRIB1-HNF4A interaction resisted competition with a CEPBA-derived peptide, suggesting different binding modalities. Together these findings establish that TRIB1 is required for HNF4A function. This regulatory axis represents a novel CEBPA-independent aspect of TRIB1 function predicted to play an important role in liver physiology.


Hepatocyte Nuclear Factor-1β Induces Redifferentiation of Dedifferentiated Tubular Epithelial Cells.

  • Mitsugu Omata‎ et al.
  • PloS one‎
  • 2016‎

Tubular epithelial cells (TECs) can be dedifferentiated by repetitive insults, which activate scar-producing cells generated from interstitial cells such as fibroblasts, leading to the accumulation and deposition of extracellular matrix molecules. The dedifferentiated TECs play a crucial role in the development of renal fibrosis. Therefore, renal fibrosis may be attenuated if dedifferentiated TECs are converted back to their normal state (re-epithelialization). However, the mechanism underlying the re-epithelialization remains to be elucidated. In the present study, TGF-β1, a profibrotic cytokine, induced dedifferentiation of cultured TECs, and the dedifferentiated TECs were re-epithelialized by the removal of TGF-β1 stimulation. In the re-epithelialization process, transcription factor hepatocyte nuclear factor 1, beta (HNF-1β) was identified as a candidate molecule involved in inducing re-epithelialization by means of DNA microarray and biological network analysis. In functional validation studies, the re-epithelialization by TGF-β1 removal was abolished by HNF-1β knockdown. Furthermore, the ectopic expression of HNF-1β in the dedifferentiated TECs induced the re-epithelialization without the inhibition of TGF-β/Smad signaling, even in the presence of TGF-β1 stimulation. In mouse renal fibrosis model, unilateral ureteral obstruction model, HNF-1β expression in the TECs of the kidney was suppressed with fibrosis progression. Furthermore, the HNF-1β downregulated TECs resulted in dedifferentiation, which was characterized by expression of nestin. In conclusion, HNF-1β suppression in TECs is a crucial event for the dedifferentiation of TECs, and the upregulation of HNF-1β in TECs has a potential to restore the dedifferentiated TECs into their normal state, leading to the attenuation of renal fibrosis.


Hepatocyte nuclear factor 1-alpha mutation in normal glucose-tolerant subjects and early-onset type 2 diabetic patients.

  • Dong Mee Lim‎ et al.
  • The Korean journal of internal medicine‎
  • 2008‎

The prevalence of diabetes in Korea is reported to be approximately 10%, but cases of maturity-onset diabetes of the young (MODY) are rare in Korea. A diagnostic technique for autosomal dominant MODY is being actively sought. In this regard, we used a DNA chip to investigate the frequency of mutations of the MODY3 gene (hepatocyte nuclear factor-1alpha) in Korean patients with early-onset type 2 diabetes.


Hepatocyte nuclear factor 4α regulates megalin expression in proximal tubular cells.

  • Shota Sasaki‎ et al.
  • Biochemistry and biophysics reports‎
  • 2019‎

Hepatocyte nuclear factor 4α (HNF4α) is a member of the nuclear receptor superfamily and upregulates expression of many genes in the liver, pancreas, small intestine, and colon. HNF4α is also highly expressed in proximal tubular epithelial cells (PTECs) in kidney. PTECs reabsorb various substances through transporters, ion channels, and receptors, but the target genes for HNF4α in PTECs have not been investigated in detail. In the present study, we aimed to identify novel HNF4α target genes that are highly expressed in PTECs. Expression of many solute carrier transporter genes was upregulated by HNF4α in human PTEC-derived HK-2 cells. Notably, expression of megalin (LRP2), an endocytic receptor of various molecules involved in development and progression of chronic kidney disease (CKD), was strongly induced by HNF4α, and the transactivation potential of the megalin promoter was dependent on HNF4α expression. Moreover, HNF4α was found to directly bind to an HNF4α binding site near the transcription start site in the megalin gene. These results indicate that HNF4α plays an important role in maintaining reabsorption and metabolism in PTECs by positive regulation of several solute carrier transporter and megalin genes at the transcriptional level.


Regulation of hepatic microRNA expression by hepatocyte nuclear factor 4 alpha.

  • Hong Lu‎ et al.
  • World journal of hepatology‎
  • 2017‎

To uncover the role of hepatocyte nuclear factor 4 alpha (HNF4α) in regulating hepatic expression of microRNAs.


Feedback loop between hepatocyte nuclear factor 1α and endoplasmic reticulum stress mitigates liver injury by downregulating hepatocyte apoptosis.

  • Si-Ying Liu‎ et al.
  • Scientific reports‎
  • 2022‎

Hepatocyte nuclear factor alpha (HNF1α), endoplasmic reticulum (ER) stress, and hepatocyte apoptosis contribute to severe acute exacerbation (SAE) of liver injury. Here, we explore HNF1α-ER stress-hepatocyte apoptosis interaction in liver injury. LO2, HepG2 and SK-Hep1 cells were treated with thapsigargin (TG) or tunicamycin (TM) to induce ER stress. Carbon tetrachloride (CCl4) was used to induce acute liver injury in mice. Low-dose lipopolysaccharide (LPS) exacerbated liver injury in CCl4-induced mice. Significant apoptosis, HNF1α upregulation, and nuclear factor kappa B (NF-κB) activation were observed in human-derived hepatocytes during ER stress. Knockdown of Rela, NF-κB p65, inhibited the HNF1α upregulation. Following CCl4 treatment ER stress, apoptosis, HNF1α expression and RelA phosphorylation were significantly increased in mice. HNF1α knockdown reduced activating transcription factor 4 (ATF4) expression, and aggravated ER stress as well as hepatocyte apoptosis in vivo and in vitro. The double fluorescent reporter gene assay confirmed that HNF1α regulated the transcription of ATF4 promoter. LPS aggravated CCl4-induced liver injury and reduced HNF1α, and ATF4 expression. Therefore, in combination, HNF1α and ER stress could be mutually regulated forming a feedback loop, which helps in protecting the injured liver by down-regulating hepatocyte apoptosis. Low-dose LPS aggravates hepatocyte apoptosis and promotes the SAE of liver injury by interfering with the feedback regulation of HNF1α and ER stress in acute liver injury.


Serum transferrin as a biomarker of hepatocyte nuclear factor 4 alpha activity and hepatocyte function in liver diseases.

  • Nurdan Guldiken‎ et al.
  • BMC medicine‎
  • 2021‎

Serum transferrin levels represent an independent predictor of mortality in patients with liver failure. Hepatocyte nuclear factor 4 alpha (HNF4α) is a master regulator of hepatocyte functions. The aim of this study was to explore whether serum transferrin reflects HNF4α activity.


Hepatocyte Nuclear Factor 3β Plays a Suppressive Role in Colorectal Cancer Progression.

  • Juan Wang‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Background and Objective: Hepatocyte nuclear factor 3β (HNF3β) is a key transcription factor in the development of the gastrointestinal tract. However, only few studies have examined its' expression, function and potential clinical significance in colorectal cancer tumorigenesis and progression. Methods: HNF3β expression in colorectal cancer tissue samples of 174 patients was assessed by immunohistochemistry. The results were analyzed with respect to patients' clinicopathological characteristics and survival. Following the in vitro cell transfection, MTT, wound healing, and Transwell assays were used to test cell proliferation, migration, and invasion, respectively. Western blot was used to examine IL6, JAK1, and STAT3 protein expression. The potential for tumor formation was evaluated using a mouse xenograft model. Results: HNF3β expression was lower in colon cancer tissue compared to normal tissue and correlated with UICC clinical stage (P = 0.001), depth of invasion (P = 0.004), regional lymph node metastasis (P = 0.007), distant metastasis (P = 0.048), and poor survival (P < 0.001) in patients with colorectal cancer. Furthermore, HNF3β overexpression impeded proliferation, migration and invasion of SW480 cells via JAK-STAT3 signaling in vitro. Moreso, HNF3β overexpression showed a significant growth inhibition of subcutaneous xenograft tumors in vivo. Conclusions: The results show that HNF3β acts as a suppressor of colorectal cancer progression and decreased HNF3 β expression is closely related to the poor prognosis. Thus, HNF3β may be a potential molecular target for inhibition of colorectal cancer cells and development of new anti-tumor therapies.


Carboxylesterase 1 Is Regulated by Hepatocyte Nuclear Factor 4α and Protects Against Alcohol- and MCD diet-induced Liver Injury.

  • Jiesi Xu‎ et al.
  • Scientific reports‎
  • 2016‎

The liver is a major organ that controls hepatic and systemic homeostasis. Dysregulation of liver metabolism may cause liver injury. Previous studies have demonstrated that carboxylesterase 1 (CES1) regulates hepatic triglyceride metabolism and protects against liver steatosis. In the present study, we investigated whether CES1 played a role in the development of alcoholic liver disease (ALD) and methionine and choline-deficient (MCD) diet-induced liver injury. Both hepatocyte nuclear factor 4α (HNF4α) and CES1 were markedly reduced in patients with alcoholic steatohepatitis. Alcohol repressed both HNF4α and CES1 expression in primary hepatocytes. HNF4α regulated CES1 expression by directly binding to the proximal promoter of CES1. Global inactivation of CES1 aggravated alcohol- or MCD diet-induced liver inflammation and liver injury, likely as a result of increased production of acetaldehyde and reactive oxygen species and mitochondrial dysfunctions. Knockdown of hepatic CES1 exacerbated ethanol-induced steatohepatitis. These data indicate that CES1 plays a crucial role in protection against alcohol- or MCD diet-induced liver injury.


Hepatocyte Nuclear Factor 1α Proinflammatory Effect Linked to the Overexpression of Liver Nuclear Factor-κB in Experimental Model of Chronic Kidney Disease.

  • Elzbieta Sucajtys-Szulc‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Chronic kidney disease (CKD) is associated with low-grade inflammation that activates nuclear factor-κB (NF-κB), which upregulates the expression of numerous NF-κB responsive genes, including the genes encoding IL-6, ICAM-1, VCAM-1, and MCP-1. Herein, we found the coordinated overexpression of genes encoding RelA/p65 (a subunit of NF-κB) and HNF1α in the livers of chronic renal failure (CRF) rats-an experimental model of CKD. The coordinated overexpression of RelA/p65 and HNF1α was associated with a significant increase in IL-6, ICAM-1, VCAM-1, and MCP-1 gene expressions. A positive correlation between liver RelA/p65 mRNA levels and a serum concentration of creatinine and BUN suggest that RelA/p65 gene transcription is tightly related to the progression of renal failure. The knockdown of HNF1α in the HepG2 cell line by siRNA led to a decrease in Rel A/p65 mRNA levels. This was associated with a decrease in IL-6, ICAM-1, VCAM-1, and MCP-1 gene expressions. The simultaneous repression of HNF-1α and RelA/p65 by clofibrate is tightly associated with the downregulation of IL-6, ICAM-1, VCAM-1, and MCP-1 gene expression. In conclusion, our findings suggest that NF-κB could be a downstream component of the HNF1α-initiated signaling pathway in the livers of CRF rats.


Hepatocyte nuclear factor 1A (HNF1A) as a possible tumor suppressor in pancreatic cancer.

  • Zhaofan Luo‎ et al.
  • PloS one‎
  • 2015‎

HNF1A (Hepatocyte nuclear factor 1 alpha) is a transcription factor that is known to regulate pancreatic differentiation and maintain homeostasis of endocrine pancreas. Recently, genome-wide association studies have implicated HNF1A as a susceptibility gene for pancreatic cancer. However, the functional significance and molecular mechanism of HNF1A in pancreatic carcinogenesis remains unclear.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: