Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

Levistilide A reverses rat hepatic fibrosis by suppressing angiotensin II‑induced hepatic stellate cells activation.

  • Shu Li‎ et al.
  • Molecular medicine reports‎
  • 2020‎

The renin angiotensin system (RAS) serves an important role in the development of hepatic fibrosis. Therefore, the present study investigated the effect of levistilide A (Lev A) on hepatic fibrosis via regulation of RAS. The effects of Lev A on the proliferation and activation of hepatic stellate cells (HSCs) were measured using a 5‑ethynyl‑2'‑deoxyuridine assay, western blot analysis and immunofluorescence. The in vivo anti‑hepatic fibrosis effect of Lev A was examined using a CCL4‑induced rat fibrosis model. Lev A significantly prohibited angiotensin (Ang) II‑induced proliferation of HSCs, and overexpression of smooth muscle α‑actin (α‑SMA) and F‑actin in HSCs. Lev A partly reversed Ang II‑induced angiotensin type 1 receptor (AT1R) upregulation and ERK and c‑Jun phosphorylation. In CCL4‑induced hepatic fibrosis rats, Lev A treatment significantly decreased the expression of collagen, α‑SMA and hydroxyproline in rat liver, and improved liver functions. Lev A treatment also significantly inhibited the CCL4‑induced increase in plasma Ang II, and upregulation of AT1R and phosphorylated ERK in rat liver. In conclusion, Lev A is a potential agent for the treatment of hepatic fibrosis by suppressing Ang II/AT1R/ERK/c‑Jun activation in HSCs.


Low concentrations of bilirubin inhibit activation of hepatic stellate cells in vitro.

  • Yinhe Tang‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Hepatic stellate cell (HSC) activation serves a key role in liver fibrosis, and is associated with chronic liver diseases. Bilirubin, a product of heme degradation, has been demonstrated to have antioxidant properties. The present study investigated the effects of physiological concentrations of bilirubin on rat HSC activation. Rat HSCs were isolated and cultured for several generations to induce activation. The activated HSCs were subsequently treated with 0, 1, 10 or 20 mg/l bilirubin and assayed for parameters of cell activation. As the bilirubin concentration increased, HSCs demonstrated reduced production of reactive oxygen species, reduced protein expression levels of α‑smooth muscle actin, a decreased mRNA expression ratio of tissue inhibitor of matrix metalloproteinase‑1/matrix metalloproteinase‑2, decreased proliferation and increased apoptosis. In conclusion, elevated bilirubin levels, within its physiological concentration range, appeared to inhibit HSC activation. These findings suggested a potential role for bilirubin in the treatment of fibrosis that requires further investigation.


Class C1 decoy oligodeoxynucleotide inhibits profibrotic genes expression in rat hepatic stellate cells.

  • Chun Rao‎ et al.
  • Molecular medicine reports‎
  • 2020‎

The aim of the present study was to investigate whether class C1 decoy oligodeoxynucleotides (ODNs) can inhibit the expression of pro‑fibrotic genes associated with rat hepatic stellate cell (HSC) activation and hepatic fibrosis. Luciferase reporter assays were performed to test the promoter activities of transforming growth factor (TGF)‑β and its downstream target genes following transfection of decoy ODNs and plasmids into HSC‑T6 cells, and western blot assays were performed to measure the protein expression of those genes following decoy ODN transfection. Class C1 decoy ODNs were confirmed to inhibit the promoter activity of TGF‑β and its downstream target genes, such as type 1 collagen (COLI)α1, tissue inhibitor of metalloproteinases (TIMP)1 and α‑smooth muscle actin by Gaussia luciferase reporter assay, and to further downregulate the expression of TGF‑β, SMAD3, COLIα1 and TIMP1 by western blotting in activated HSC‑T6 cells. In conclusion, class C1 decoy ODNs inhibited pro‑fibrotic gene expression in rat HSCS by downregulating TGF‑β signaling.


Transforming growth factor‑β1 reduces apoptosis via autophagy activation in hepatic stellate cells.

  • Mei-Ya Fu‎ et al.
  • Molecular medicine reports‎
  • 2014‎

Autophagy is a metabolic process that is important in fibrogenesis, in which cellular components are degraded by lysosomal machinery. Transforming growth factor β1 (TGF‑β1) is a potent fibrogenic cytokine involved in liver fibrosis; however, it remains elusive whether autophagy is regulated by TGF‑β1 in this process. In the present study, the function of TGF‑β1‑mediated autophagy in the proliferation and apoptosis of hepatic stellate cells (HSCs) was investigated. A rat HSC cell line (HSC‑T6) was incubated with or without TGF‑β1 followed by bafilomycin A1, and microtubule-associated proteins 1A/1B light chain 3 (LC3) small interfering (si)RNA was used to inhibit autophagy in order to assess the association between TGF‑β1 and autophagy. HSC‑T6 cell transient transfection was accomplished with a pLVX‑AcGFP‑N1‑rLC3B‑encoding plasmid. An MTS assay and flow cytometry were utilized to detect proliferation and apoptosis of HSC‑T6 cells. Quantitative polymerase chain reaction, immunofluorescence and western blot analysis were used to detect the presence of activation markers. Proliferation was increased and apoptosis was reduced in HSC‑T6 cells treated with TGF‑β1 compared with cells subjected to serum deprivation. However, when HSC‑T6 cells were treated with bafilomycin A1 and LC3 siRNA, increased apoptosis and reduced proliferation were observed. In addition, protein and mRNA expression levels of the autophagy marker LC3 were significantly increased. GFP‑LC3 punctate markings were more prolific following TGF‑β1 treatment of HSC‑T6 cells, indicating that TGF‑β1 may rescue HSC‑T6 cells from serum deprivation and reduce apoptosis via autophagy induction. The present study elucidated the possible functions of TGF‑β1‑mediated autophagy in the pathological process of liver fibrosis.


11β‑hydroxysteroid dehydrogenase‑1 is associated with the activation of hepatic stellate cells in the development of hepatic fibrosis.

  • Wei Xiao‎ et al.
  • Molecular medicine reports‎
  • 2020‎

Hepatic fibrosis (HF) is a common complication of numerous chronic liver diseases, but predominantly results from persistent liver inflammation or injury. If left untreated, HF can progress and develop into liver cirrhosis and even hepatocellular carcinoma. However, the underlying molecular mechanisms of HF remain unknown. The present study aimed to investigate the role of 11β‑hydroxysteroid dehydrogenase‑1 (11β‑HSD1) during the development of hepatic fibrosis. An experimental rat model of liver fibrosis was induced using porcine serum. 11β‑HSD1 gene expression levels and enzyme activity during hepatic fibrogenesis were assessed. 11β‑HSD1 gene knockdown using small interfering RNA and overexpression were performed in LX2‑human hepatic stellate cells (HSCs). HSCs were stimulated with transforming growth factor‑β1 (TGF‑β1). Cell cycle distribution, proliferation, collagen secretion and 11β‑HSD1 gene activity in HSCs were compared before and after stimulation. As hepatic fibrosis progressed, 11β‑HSD1 gene expression and activity increased, indicating a positive correlation with typical markers of liver fibrosis. 11β‑HSD1 inhibition markedly reduced the degree of fibrosis. The cell proliferation was increased, the number of cells in the G0/G1 phase decreased and the number of cells in the S and G2/M phases increased in the pSuper transfected group compared with the N group. In addition, the overexpression of 11β‑HSD1 enhanced the TGF‑β1‑induced activation of LX2‑HSCs and enzyme activity of connective tissue growth factor. 11β‑HSD1 knockdown suppressed cell proliferation by blocking the G0/G1 phase of the cell cycle, which was associated with HSC stimulation and inhibition of 11β‑HSD1 enzyme activity. In conclusion, increased 11β‑HSD1 expression in the liver may be partially responsible for hepatic fibrogenesis, which is potentially associated with HSC activation and proliferation.


LOC102553417 silencing facilitates the apoptosis of hepatic stellate cells via the miR‑30e/MTDH axis.

  • Wujun Wei‎ et al.
  • Molecular medicine reports‎
  • 2022‎

Hepatic fibrosis is an inevitable pathological process in the progression of multiple chronic liver diseases and remains a major challenge in the treatment of liver diseases. The purpose of the present study was to demonstrate whether silencing of the long non‑coding RNA LOC102553417 promoted hepatic stellate cell (HSC) apoptosis via the microRNA (miR)‑30e/metadherin (MTDH) axis. A LOC102553417 silencing lentivirus was constructed and transduced into HSC‑T6 cells. After confirming the silencing efficiency by reverse transcription‑quantitative PCR, cell proliferation was assessed using the Cell Counting Kit‑8 assay and apoptosis was assessed using flow cytometry. The interaction between LOC102553417 and miR‑30e, and that between miR‑30e and MTDH, was demonstrated using the dual‑luciferase reporter assay and RNA binding protein immunoprecipitation. The apoptosis of HSC‑T6 cells was detected after transfection of miR‑30e mimics and inhibitors with or without silencing LOC102553417. Silencing of LOC102553417 curbed HSC‑T6 cell proliferation and expedited their apoptosis. LOC102553417 was demonstrated to target miR‑30e, whereas miR‑30e targeted MTDH. In addition, LOC102553417 silencing significantly upregulated miR‑30e expression levels, and significantly downregulated MTDH mRNA and protein expression levels, which resulted in a significantly reduced p‑Akt/Akt ratio and significantly elevated p53 protein expression levels. Transfection with miR‑30e mimic alone significantly enhanced HSC‑T6 cell apoptosis and inhibits LOC102553417 and MTDH expressions, In addition, miR‑30e mimic expedites the apoptosis of HSCs stimulated by LOC102553417 silencing; consistent results were obtained by reverse validation of miR‑30e inhibitor. In conclusion, the present study demonstrated that LOC102553417 silencing stimulated the apoptosis of HSCs via the miR‑30e/MTDH axis.


Rat hepatic stellate cells alter the gene expression profile and promote the growth, migration and invasion of hepatocellular carcinoma cells.

  • Zhi-Ming Wang‎ et al.
  • Molecular medicine reports‎
  • 2014‎

The aim of the present study was to examine the effects of activated hepatic stellate cells (HSCs) and their paracrine secretions, on hepatocellular cancer cell growth and gene expression in vitro and in vivo. Differentially expressed genes in McA-RH7777 hepatocellular carcinoma (HCC) cells following non-contact co-culture with activated stellate cells, were identified by a cDNA microarray. The effect of the co-injection of HCC cells and activated HSCs on tumor size in rats was also investigated. Non-contact co-culture altered the expression of 573 HCC genes by >2-fold of the control levels. Among the six selected genes, ELISA revealed increased protein levels of hepatic growth factor, matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9). Incubation of HCC cells with medium conditioned by activated HSCs significantly increased the proliferation rate (P<0.001), migration rate and the number of invasive HCC cells (P=0.001). Co-injection of HCC cells and activated HSCs into rats significantly increased the weight of the resulting HCC tumors (P<0.01). The paracrine activity of activated HSCs markedly altered the gene expression profile of HCC cells and affected their growth, migration and invasiveness. The results from the present study indicate that the interaction between the activated HSCs and HCC has an important role in the development of HCC.


Novel oral plasminogen activator inhibitor‑1 inhibitor TM5275 attenuates hepatic fibrosis under metabolic syndrome via suppression of activated hepatic stellate cells in rats.

  • Ryuichi Noguchi‎ et al.
  • Molecular medicine reports‎
  • 2020‎

An orally bioavailable small molecule inhibitor of plasminogen activator inhibitor‑1 (PAI‑1) is currently being clinically assessed as a novel antithrombotic agent. Although PAI‑1 is known to serve a key role in the pathogenesis of metabolic syndrome (MetS) including nonalcoholic steatohepatitis (NASH), the pharmacological action of an oral PAI‑1 inhibitor against the development of MetS‑related liver fibrosis remains unclear. The current study was designed to explicate the effect of TM5275, an oral PAI‑1 inhibitor, on MetS‑related hepatic fibrogenesis. The in vivo antifibrotic effect of orally administered TM5275 was investigated in two different rat MetS models. Fischer 344 rats received a choline‑deficient L‑amino‑acid‑defined diet for 12 weeks to induce steatohepatitis with development of severe hepatic fibrosis. Otsuka Long‑Evans Tokushima Fatty rats, used to model congenital diabetes, underwent intraperitoneal injection of porcine serum for 6 weeks to induce hepatic fibrosis under diabetic conditions. In each experimental model, TM5275 markedly ameliorated the development of hepatic fibrosis and suppressed the proliferation of activated hepatic stellate cells (HSCs). Additionally, the hepatic production of tumor growth factor (TGF)‑β1 and total collagen was suppressed. In vitro assays revealed that TGF‑β1 stimulated the upregulation of Serpine1 mRNA expression, which was inhibited by TM5275 treatment in cultured HSC‑T6 cells, a rat HSC cell line. Furthermore, TM5275 substantially attenuated the TGF‑β1‑stimulated proliferative and fibrogenic activity of HSCs by inhibiting AKT phosphorylation. Collectively, TM5275 demonstrated an antifibrotic effect on liver fibrosis in different rat MetS models, suppressing TGF‑β1‑induced HSC proliferation and collagen synthesis. Thus, PAI‑1 inhibitors may serve as effective future therapeutic agents against NASH‑based hepatic fibrosis.


F‑actin cytoskeleton reorganization is associated with hepatic stellate cell activation.

  • Xiaodong Cui‎ et al.
  • Molecular medicine reports‎
  • 2014‎

The activation of hepatic stellate cells (HSCs) is involved in the development of hepatic fibrosis. Previous studies have indicated that the acquisition of certain properties by activated HSCs is highly dependent on the reorganization of the actin cytoskeleton. However, direct evidence showing that the reorganization of the actin cytoskeleton is responsible for HSC activation is lacking. The aim of the present study was to investigate the role of cytoskeletal reorganization during HSC activation and to clarify the underlying mechanism. HSC-T6 cells were treated either with the F-actin stabilizer jasplakinolide (Jas) or the depolymerizer cytochalasin D (Cyto D). The actin cytoskeleton was evaluated via assessment of stress fiber formation. Furthermore, the activation properties of HSCs, including proliferation, adhesion, migration and the expression of α-smooth muscle actin (α-SMA) and collagen 1, were investigated in vitro. The results showed that Jas and Cyto D affected the actin distribution in HSC-T6 cells. Treatment with Jas resulted in thick actin bundles and a patchy appearance in the cytoplasm in HSC-T6 cells. In parallel, polymerization of actin microfilaments induced by Jas upregulated the expression of α-SMA and collagen 1, and also enhanced the migration and adhesion properties of HSC-T6 cells. Furthermore, the activation of HSC-T6 cells induced by the reorganization of the actin cytoskeleton was associated with the p38 mitogen-activated protein kinase (p38 MAPK) pathway. In conclusion, the present study suggests that the reorganization of the F-actin cytoskeleton is associated with HSC activation and that the p38 MAPK pathway is involved in this process. The inhibition of F-actin reorganization may thus be a potential key factor or molecular target for the control of liver fibrosis or cirrhosis.


S-Adenosylmethionine suppresses the expression of Smad3/4 in activated human hepatic stellate cells via Rac1 promoter methylation.

  • Kangqi Bian‎ et al.
  • Molecular medicine reports‎
  • 2016‎

The aim of the present study was to investigate whether S-adenosylmethionine (SAM) was able to suppress activated human hepatic stellate cells (HSCs). Human LX-2 HSCs were cultured with SAM or NSC23766, and were transfected with plasmids encoding ras-related C3 botulinum toxin substrate 1 (Rac1) protein or an empty expression vector. Cell proliferation was detected by Cell Counting Kit-8. Cell migration and invasion were determined using the Transwell assay. The expression levels of Rac1 and Smad3/4 were detected by reverse transcription‑quantitative polymerase chain reaction (PCR) or western blotting. The methylation status of Rac1 promoters was measured by methylation‑specific PCR. The results demonstrated that SAM and NSC23766 suppressed the expression of Smad3/4 in LX‑2 cells. The overexpression of Rac1 enhanced the proliferation, migration and invasion of LX‑2 cells. In addition, compared with the control groups, a marked increase was observed in the protein expression levels of Smad3/4 in the LX‑2 cells transfected with Rac1 plasmids. The methylation-specific PCR findings showed that SAM increased the methylation of Rac1 promoters. The results of the present study suggested that Rac1 enhanced the expression of Smad3/4 in activated HSCs; however, this increase may be suppressed by SAM-induced methylation of Rac1 promoters.


β-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/β-catenin signaling inhibits hepatic stellate cell activation.

  • Wen-Song Ge‎ et al.
  • Molecular medicine reports‎
  • 2014‎

β-catenin, a core component of Wnt/β-catenin signaling, has been shown to be an important regulator of cellular proliferation and differentiation. Abnormal activation of Wnt/β-catenin signaling promotes tissue fibrogenesis. In the present study, the role of β-catenin during liver fibrogenesis was analyzed and the functional effects of β-catenin gene silencing in hepatic stellate cells (HSCs) using small interfering (si)RNA were investigated. The expression of β-catenin in human hepatic fibrosis tissues of different grades and normal human hepatic tissues was examined using immunohistochemistry. To inhibit the Wnt/β-catenin signaling pathway, siRNA for β-catenin was developed and transiently transfected into HSC-T6 cells using Lipofectamine 2000. β-catenin expression was evaluated by quantitative polymerase chain reaction (qPCR) and western blot analysis. The expression of collagen types Ⅰ and Ⅲ was evaluated by qPCR and immunofluorescent staining. Cellular proliferation and the cell cycle were analyzed using a methyl thiazolyl tetrazolium assay. Apoptosis was assessed by Annexin V staining. A higher expression level of β-catenin was identified in the patients with high-grade hepatic fibrosis in comparison with that of the normal controls. Additionally, β-catenin siRNA molecules were successfully transfected into HSCs and induced inhibition of β-catenin expression in a time-dependent manner. β-catenin siRNA treatment also inhibited synthesis of collagen types Ⅰ and Ⅲ in transfected HSCs. Furthermore, compared with those of the control group, siRNA-mediated knockdown of β-catenin in HSC-T6 cells inhibited cell proliferation and resulted in cell apoptosis. This study suggests a significant functional role for β-catenin in the development of liver fibrosis and demonstrates that downregulation of the Wnt/β-catenin signaling pathway inhibits HSC activation. Thus, this study provides a novel strategy for the treatment of hepatic fibrosis.


Histone deacetylase inhibitor givinostat alleviates liver fibrosis by regulating hepatic stellate cell activation.

  • He-Ming Huang‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Hepatic fibrosis, a common pathological manifestation of chronic liver injury, is generally considered to be the end result of an increase in extracellular matrix produced by activated hepatic stellate cells (HSCs). The aim of the present study was to target the mechanisms underlying HSC activation in order to provide a powerful therapeutic strategy for the prevention and treatment of liver fibrosis. In the present study, a high‑throughput screening assay was established, and the histone deacetylase inhibitor givinostat was identified as a potent inhibitor of HSC activation in vitro. Givinostat significantly inhibited HSC activation in vivo, ameliorated carbon tetrachloride‑induced mouse liver fibrosis and lowered plasma aminotransferases. Transcriptomic analysis revealed the most significantly regulated genes in the givinostat treatment group in comparison with those in the solvent group, among which, dermokine (Dmkn), mesothelin (Msln) and uroplakin‑3b (Upk3b) were identified as potential regulators of HSC activation. Givinostat significantly reduced the mRNA expression of Dmkn, Msln and Upk3b in both a mouse liver fibrosis model and in HSC‑LX2 cells. Knockdown of any of the aforementioned genes inhibited the TGF‑β1‑induced expression of α‑smooth muscle actin and collagen type I, indicating that they are crucial for HSC activation. In summary, using a novel strategy targeting HSC activation, the present study identified a potential epigenetic drug for the treatment of hepatic fibrosis and revealed novel regulators of HSC activation.


miR‑203 inhibits the expression of collagen‑related genes and the proliferation of hepatic stellate cells through a SMAD3‑dependent mechanism.

  • Danping Hu‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Activation of hepatic stellate cells (HSCs) is a pivotal event during hepatic fibrogenesis. Activated HSCs are the main source of collagen and other extracellular matrix (ECM) components, and emerging antifibrotic therapies are aimed at preventing ECM synthesis and deposition. MicroRNAs (miRNAs) have been demonstrated to exert regulatory effects on HSC activation and ECM synthesis. In the present study, the HSC‑T6 rat hepatic stellate cell line was transiently transfected with a miRNA (miR)‑203 mimic, which is an artificial miRNA that enhances the function of miR‑203, with a miR‑203 inhibitor or with a scramble miRNA negative control. mRNA and protein expression levels of collagen (COL) 1A1, COL3A1, α‑smooth muscle actin (α‑SMA) and mothers against decapentaplegic homolog 3 (SMAD3) were assessed using reverse transcription‑quantitative polymerase chain reaction and western blot analysis, respectively. The interaction between miR‑203 and the 3'‑untranslated region (UTR) of SMAD3 mRNA was examined using a dual‑luciferase reporter assay. The proliferative capabilities of activated HSCs were measured using an MTT assay. The present results demonstrated that the mRNA and protein expression levels of COL1A1, COL3A1, α‑SMA and SMAD3 were significantly upregulated following transfection of HSC‑T6 cells with the miR‑203 inhibitor. Conversely, COL1A1, COL3A1, α‑SMA, and SMAD3 mRNA and protein expression appeared to be downregulated in rat HSCs transfected with miR‑203 mimics. Notably, the inhibition of miR‑203 expression was revealed to promote HSC proliferation, whereas increased miR‑203 expression suppressed the proliferative capabilities of HSC‑T6 cells. Furthermore, SMAD3 was revealed to be a direct target of miR‑203. The present study suggested that miR‑203 may function to prevent the synthesis and deposition of ECM components, including COL1A1, COL3A1 and α‑SMA, and to inhibit the proliferation of HSCs through a SMAD3‑dependent mechanism. Therefore, it may be hypothesized that miR‑203 has potential as a novel target for the development of alternative therapeutic strategies for the treatment of patients with hepatic fibrosis in clinical practice.


lncRNA MEG3 modulates hepatic stellate cell activation by sponging miR‑145 to regulate PPARγ.

  • Rong Qin‎ et al.
  • Molecular medicine reports‎
  • 2022‎

It is important to determine the mechanism of liver fibrosis for targeted therapy and the development of targeted therapies for liver fibrosis may offer promise for patients with liver disease. Long non‑coding RNAs (lncRNAs) serve a role in hepatic fibrosis. The lncRNA maternally expressed gene 3 (MEG3) has been confirmed to inhibit liver fibrosis. The present study investigated the role of the MEG3 in healthy patients and patients with liver fibrosis. The expression levels of MEG3 and microRNA (miR)‑145 in the serum of healthy volunteers and patients with liver fibrosis and in LX‑2 cells were detected using reverse transcription‑quantitative PCR. A dual‑luciferase reporter assay was used to determine the targeting relationship between MEG3 and miR‑145, and the targeting relationship between miR‑145 and peroxisome proliferator‑activated receptor γ (PPARγ). The protein expression levels of PPARγ, α‑smooth muscle actin (α‑SMA) and collagen I (COL1A1) were detected using western blotting. The expression levels of α‑SMA and COL1A1 were also determined using immunofluorescence. Finally, a Cell Counting Kit‑8 assay was performed to assess the proliferative ability of LX‑2 cells. A significantly reduced MEG3 expression level was demonstrated in serum from patients with liver fibrosis compared with serum from healthy controls. TGF‑β1 induced a significantly decreased MEG3 expression level in LX‑2 human hepatic stellate cells in vitro. The TGF‑β1‑induced increases in cell proliferation and α‑SMA and COL1A1 protein expression levels were reversed following MEG3 overexpression. The results also demonstrated that MEG3 sponged miR‑145 and competed endogenously with miR‑145 to regulate PPARγ. In summary, the present study identified MEG3 as an anti‑fibrotic lncRNA and provided new information regarding the role of MEG3 in liver fibrosis. MEG3 may therefore be a potential target in the treatment of liver fibrosis.


In vitro analysis of hepatic stellate cell activation influenced by transmembrane 6 superfamily 2 polymorphism.

  • Songyao Liu‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Non‑alcoholic steatohepatitis (NASH) may progress via liver fibrosis along with hepatic stellate cell (HSC) activation. A single nucleotide polymorphism (SNP; rs58542926) located in transmembrane 6 superfamily 2 (TM6SF2) has been reported to be significantly associated with fibrosis in patients with NASH, but the precise mechanism is still unknown. The present study aimed to explore the role of TM6SF2 in HSC activation in vitro. Plasmids producing TM6SF2 wild-type (WT) and mutant type (MT) containing E167K amino acid substitution were constructed, and the activation of LX‑2 cells was analyzed by overexpressing or knocking down TM6SF2 under transforming growth factor β1 (TGFβ) treatment. Intracellular α‑smooth muscle actin (αSMA) expression in LX‑2 cells was significantly repressed by TM6SF2‑WT overexpression and increased by TM6SF2 knockdown. Following treatment with TGFβ, αSMA expression was restored in TM6SF2‑WT overexpressed LX‑2 cells and was enhanced in TM6SF2 knocked‑down LX‑2 cells. Comparing αSMA expression under TM6SF2‑WT or ‑MT overexpression, expression of αSMA in TM6SF2‑MT overexpressed cells was higher than that in TM6SF2‑WT cells and was further enhanced by TGFβ treatment. The present study demonstrated that intracellular αSMA expression in HCS was negatively regulated by TM6SF2 while the E167K substitution released this negative regulation and led to enhanced HSC activation by TGFβ. These results suggest that the SNP in TM6SF2 may relate to sensitivity of HSC activation.


Carvedilol improves liver cirrhosis in rats by inhibiting hepatic stellate cell activation, proliferation, invasion and collagen synthesis.

  • Liping Ling‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Portal hypertension (PHT) is one of the most severe consequences of liver cirrhosis. Carvedilol is a first‑line pharmacological treatment of PHT. However, the antifibrogenic effects of carvedilol on liver cirrhosis and the intrinsic mechanisms underlying these effects have not been thoroughly investigated. The present study aimed to investigate the antifibrogenic effects of carvedilol on liver cirrhosis in vivo and in vitro. Liver cirrhosis was induced in rats by carbon tetrachloride (CCl4) administration for 9 weeks; carvedilol was administered simultaneously in the experimental group. Blood samples were collected for serum biochemistry. Liver tissues were used for fibrosis evaluation, histological examination, immunohistochemistry and western blot analysis. The human hepatic stellate cell (HSC) line LX‑2 was used for in vitro studies. The effects of carvedilol on LX‑2 cell proliferation and invasion were evaluated by Cell Counting Kit‑8 assay and Transwell invasion assays, respectively. The effect of carvedilol on transforming growth factor β1 (TGFβ1)‑induced collagen synthesis in LX‑2 cells and the molecular mechanisms were examined by western blot analysis. The results demonstrated that carvedilol improved CCl4‑induced structural distortion and fibrosis in the liver. Carvedilol inhibited HSC activation, proliferation and invasion. Carvedilol inhibited HSC collagen synthesis through the TGFβ1/SMAD pathway. In conclusion, carvedilol may alleviate liver cirrhosis in rats by inhibiting HSC activation, proliferation, invasion and collagen synthesis. Carvedilol may be a potential treatment of early‑stage liver cirrhosis.


Interleukin‑10 promotes primary rat hepatic stellate cell senescence by upregulating the expression levels of p53 and p21.

  • Yue-Hong Huang‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Liver fibrosis is characterized by the excessive deposition of extracellular matrix (ECM) components, and activated hepatic stellate cells (HSCs) are a primary source of ECM. Several studies have revealed that the induction of HSC senescence may reduce liver fibrosis. The effect of interleukin‑10 (IL‑10) on the senescence of activated HSCs is not fully understood. Therefore, the present study examined its effects and potential mechanisms in activated primary rat HSCs. Collagenase perfusion and density gradient centrifugation methods were used to isolate rat HSCs. HSCs were identified by autofluorescence, Oil Red O staining and immunocytochemical analysis. Activated HSCs were treated with 0, 10, 20 or 40 ng/ml IL‑10 for 24 h. Senescence‑associated β‑galactosidase (SA‑β‑Gal) staining, flow cytometry analysis and a cell counting kit‑8 assay were performed to detect the senescence, apoptosis and viability of rat HSCs, respectively. Reverse transcription‑quantitative polymerase chain reaction, western blot analysis and enzyme linked immunosorbent assays were used to detect the expression of senescence‑associated proteins and cytokines. Freshly isolated rat HSCs exhibited a striking blue‑green autofluorescence and HSC retinoid droplets were stained bright red by Oil Red O. Immunocytochemical analysis demonstrated the cytoplasmic expression of HSC markers desmin and α‑smooth muscle actin. The number of SA‑β‑Gal positive HSCs, the apoptotic rate and the expression levels of p53, p21 and tumor necrosis factor‑α were significantly increased following IL‑10 treatment. HSC viability and IL‑6 and IL‑8 expression levels were significantly decreased compared with the control group. In summary, primary rat HSCs were successfully isolated and IL‑10 was demonstrated to promote the senescence of activated primary rat HSCs through the upregulation of p53 and p21 expression.


Astragalus and Paeoniae Radix Rubra extract (APE) inhibits hepatic stellate cell activation by modulating transforming growth factor-β/Smad pathway.

  • Weijuan Huang‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Previous studies have shown that Astragalus and Paeoniae Radix Rubra extract (APE) is capable of protecting against liver fibrosis in rats. The hypothesis of the present study was that APE exerts its anti‑fibrotic effect by mediating the transforming growth factor β (TGF‑β)/Smad signaling pathway. In order to investigate this hypothesis, a series of assays were designed to detect the effects of APE on cell proliferation, cell invasion and the activation of hepatic stellate cells (HSCs). In addition, the effects of APE on the TGF‑β/Smad signaling pathway were explored, with the aim of elucidating the underlying mechanisms. HSCs were initially isolated from normal rat liver. A number of assays were then employed in order to evaluate the effects of APE on the function of these cells. Cell proliferation was investigated using an MTT assay and cell invasion was observed with the use of transwell invasion chambers. Collagen synthesis was measured with a 3H‑proline incorporation assay and expression of α‑smooth muscle actin was used to determine the extent of HSC activation. Protein expression induced by TGF‑β1 in HSCs was investigated by western blot and immunofluorescence analyses. Plasminogen activator inhibitor type1 (PAI‑1) and urokinase‑type plasminogen activator (uPA) transcriptional activity was measured using reverse transcription polymerase chain reaction. The results demonstrated that APE (5‑80 µg/ml) significantly inhibited fetal bovine serum‑induced cell proliferation in a dose‑dependent manner. Cell invasion and activation of HSCs induced by TGF‑β1 were disrupted by treatment with APE in a dose‑dependent manner. TGF‑β1 was observed to increase the phosphorylation of Smad2/3, while APE administered at higher doses produced inhibitory effects on Smad2/3 phosphorylation. In addition, administration of APE abrogated the TGF‑β1‑induced reduction in Smad‑7 expression in a dose‑dependent manner. The results further indicated that APE treatment not only reduced PAI‑1 expression, but also increased uPA expression in a dose‑dependent manner. In conclusion, APE exerted inhibitory effects on cell proliferation, invasion and activation of HSCs, and the mechanisms underlying these effects may involve the TGF‑β1/Smad pathway.


miR‑375 affects the hedgehog signaling pathway by downregulating RAC1 to inhibit hepatic stellate cell viability and epithelial‑mesenchymal transition.

  • Zhiwei Liang‎ et al.
  • Molecular medicine reports‎
  • 2021‎

MicroRNAs (miRNAs/miRs) are a class of non‑coding RNAs that serve crucial roles in liver cancer and other liver injury diseases. However, the expression profile and mechanisms underlying miRNAs in liver fibrosis are not completely understood. The present study identified the novel miR‑375/Rac family small GTPase 1 (RAC1) regulatory axis in liver fibrosis. Reverse transcription‑quantitative PCR was performed to detect miR‑375 expression levels. MTT, flow cytometry and western blotting were performed to explore the in vitro roles of miR‑375. The dual‑luciferase reporter gene assay was performed to determine the potential mechanism underlying miR‑375 in liver fibrosis. miR‑375 expression was significantly downregulated in liver fibrosis tissues and cells compared with healthy control tissues and hepatocytes, respectively. Compared with the pre‑negative control group, miR‑375 overexpression inhibited mouse hepatic stellate cell (HSC) viability and epithelial‑mesenchymal transition, and alleviated liver fibrosis. The dual‑luciferase reporter assay results demonstrated that miR‑375 bound to RAC1. Moreover, the results indicated that miR‑375 regulated the hedgehog signaling pathway via RAC1 to restrain HSC viability and EMT, thus exerting its anti‑liver fibrosis function. The present study identified the miR‑375/RAC1 axis as a novel regulatory axis associated with the development of liver fibrosis.


Cluster of differentiation 147 is a key molecule during hepatocellular carcinoma cell-hepatic stellate cell cross-talk in the rat liver.

  • Tianyou Ma‎ et al.
  • Molecular medicine reports‎
  • 2015‎

The cross-talk between hepatocellular carcinoma (HCC) cells and activated hepatic stellate cells (HSCs) is considered to be important for modulating the biological behavior of tumor cells. However, the molecular links between inflammation and cancer in the activation of HSCs remain to be elucidated. The present study demonstrated that cluster of differentiation (CD)147 is a key molecule involved in the interaction between HCC cells and HSCs. The effects of conditioned medium from human HCC cells on the activation of the human HSC line, LX-2, were assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blotting, RT-qPCR and gelatin zymography were also used to investigate the effects of CD147 on the activation of LX-2. The expression levels of α-smooth muscle actin (α-SMA) and CD147 were assessed in a co-culture system of LX-2 and FHCC-98 cells by immunofluorescence staining and immunoblotting. In hepatic tissues from a rat model of fibrosis, immunohistochemistry and immunoblotting were performed to detect the expression levels of α-SMA and CD147. Tumor-conditioned medium and CD147 promoted cell proliferation, activated LX-2 cells, increased the expression levels of α-SMA, collagen I and tissue inhibitor of metalloproteinase-1 (TIMP-1), and increased the secretion of matrix metalloproteinase (MMP)-2. The HSCs, which were induced in the co-culture system of HCC cells and HSCs exhibited marked expression levels of CD147. In the hepatic tissue of rat models of fibrosis induced by CCl4, marked expression levels of CD147 were observed in the activated HSCs. Therefore, CD147 promoted the activation of HSCs and was a key molecule during HCC cell-HSC cross-talk in the rat liver.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: