Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Primary Alcohol-Activated Human and Mouse Hepatic Stellate Cells Share Similarities in Gene-Expression Profiles.

  • Xiao Liu‎ et al.
  • Hepatology communications‎
  • 2020‎

Alcoholic liver disease (ALD) is a leading cause of cirrhosis in the United States, which is characterized by extensive deposition of extracellular matrix proteins and formation of a fibrous scar. Hepatic stellate cells (HSCs) are the major source of collagen type 1 producing myofibroblasts in ALD fibrosis. However, the mechanism of alcohol-induced activation of human and mouse HSCs is not fully understood. We compared the gene-expression profiles of primary cultured human HSCs (hHSCs) isolated from patients with ALD (n = 3) or without underlying liver disease (n = 4) using RNA-sequencing analysis. Furthermore, the gene-expression profile of ALD hHSCs was compared with that of alcohol-activated mHSCs (isolated from intragastric alcohol-fed mice) or CCl4-activated mouse HSCs (mHSCs). Comparative transcriptome analysis revealed that ALD hHSCs, in addition to alcohol-activated and CCl4-activated mHSCs, share the expression of common HSC activation (Col1a1 [collagen type I alpha 1 chain], Acta1 [actin alpha 1, skeletal muscle], PAI1 [plasminogen activator inhibitor-1], TIMP1 [tissue inhibitor of metalloproteinase 1], and LOXL2 [lysyl oxidase homolog 2]), indicating that a common mechanism underlies the activation of human and mouse HSCs. Furthermore, alcohol-activated mHSCs most closely recapitulate the gene-expression profile of ALD hHSCs. We identified the genes that are similarly and uniquely up-regulated in primary cultured alcohol-activated hHSCs and freshly isolated mHSCs, which include CSF1R (macrophage colony-stimulating factor 1 receptor), PLEK (pleckstrin), LAPTM5 (lysosmal-associated transmembrane protein 5), CD74 (class I transactivator, the invariant chain), CD53, MMP9 (matrix metallopeptidase 9), CD14, CTSS (cathepsin S), TYROBP (TYRO protein tyrosine kinase-binding protein), and ITGB2 (integrin beta-2), and other genes (compared with CCl4-activated mHSCs). Conclusion: We identified genes in alcohol-activated mHSCs from intragastric alcohol-fed mice that are largely consistent with the gene-expression profile of primary cultured hHSCs from patients with ALD. These genes are unique to alcohol-induced HSC activation in two species, and therefore may become targets or readout for antifibrotic therapy in experimental models of ALD.


Lipoprotein Lipase Up-regulation in Hepatic Stellate Cells Exacerbates Liver Fibrosis in Nonalcoholic Steatohepatitis in Mice.

  • Toshiaki Teratani‎ et al.
  • Hepatology communications‎
  • 2019‎

Lipoprotein lipase (LPL) plays a central role in incorporating plasma lipids into tissues and regulates lipid metabolism and energy balance in the human body. Conversely, LPL expression is almost absent in normal adult livers. Therefore, its physiological role in the liver remains unknown. We aimed to elucidate the role of LPL in the pathophysiology of nonalcoholic steatohepatitis (NASH), a hepatic manifestation of obesity. Hepatic stellate cell (HSC)-specific LPL-knockout (LplHSC-KO ) mice, LPL-floxed (Lplfl/fl ) mice, or double-mutant toll-like receptor 4-deficient (Tlr4-/- ) LplHSC-KO mice were fed a high-fat/high-cholesterol diet for 4 weeks to establish the nonalcoholic fatty liver model or an high-fat/high-cholesterol diet for 24 weeks to establish the NASH model. Human samples, derived from patients with nonalcoholic fatty liver disease, were also examined. In human and mouse NASH livers, serum obesity-related factors, such as free fatty acid, leptin, and interleukin-6, dramatically increased the expression of LPL, specifically in HSCs through signal transducer and activator of transcription 3 signaling, as opposed to that in hepatocytes or hepatic macrophages. In the NASH mouse model, liver fibrosis was significantly reduced in LplHSC-KO mice compared with that in Lplfl/fl mice. Nonenzymatic LPL-mediated cholesterol uptake from serum lipoproteins enhanced the accumulation of free cholesterol in HSCs, which amplified TLR4 signaling, resulting in the activation of HSCs and progression of hepatic fibrosis in NASH. Conclusion: The present study reveals the pathophysiological role of LPL in the liver, and furthermore, clarifies the pathophysiology in which obesity, as a background factor, exacerbates NASH. The LPL-mediated HSC activation pathway could be a promising therapeutic target for treating liver fibrosis in NASH.


Focal Adhesion Kinase Promotes Hepatic Stellate Cell Activation by Regulating Plasma Membrane Localization of TGFβ Receptor 2.

  • Yunru Chen‎ et al.
  • Hepatology communications‎
  • 2020‎

Transforming growth factor β (TGFβ) induces hepatic stellate cell (HSC) differentiation into tumor-promoting myofibroblast, although underlying mechanism remains incompletely understood. Focal adhesion kinase (FAK) is activated in response to TGFβ stimulation, so it transmits TGFβ stimulus to extracellular signal-regulated kinase and P38 mitogen-activated protein kinase signaling. However, it is unknown whether FAK can, in return, modulate TGFβ receptors. In this study, we tested whether FAK phosphorylated TGFβ receptor 2 (TGFβR2) and regulated TGFβR2 intracellular trafficking in HSCs. The FAKY397F mutant and PF-573,228 were used to inhibit the kinase activity of FAK, the TGFβR2 protein level was quantitated by immunoblotting, and HSC differentiation into myofibroblast was assessed by expression of HSC activation markers, alpha-smooth muscle actin, fibronectin, or connective tissue growth factor. We found that targeting FAK kinase activity suppressed the TGFβR2 protein level, TGFβ1-induced mothers against decapentaplegic homolog phosphorylation, and myofibroblastic activation of HSCs. At the molecular and cellular level, active FAK (phosphorylated FAK at tyrosine 397) bound to TGFβR2 and kept TGFβR2 at the peripheral plasma membrane of HSCs, and it induced TGFβR2 phosphorylation at tyrosine 336. In contrast, targeting FAK or mutating Y336 to F on TGFβR2 led to lysosomal sorting and degradation of TGFβR2. Using RNA sequencing, we identified that the transcripts of 764 TGFβ target genes were influenced by FAK inhibition, and that through FAK, TGFβ1 stimulated HSCs to produce a panel of tumor-promoting factors, including extracellular matrix remodeling proteins, growth factors and cytokines, and immune checkpoint molecule PD-L1. Functionally, targeting FAK inhibited tumor-promoting effects of HSCs in vitro and in a tumor implantation mouse model. Conclusion: FAK targets TGFβR2 to the plasma membrane and protects TGFβR2 from lysosome-mediated degradation, thereby promoting TGFβ-mediated HSC activation. FAK is a target for suppressing HSC activation and the hepatic tumor microenvironment.


Cellular communication network factor 1-stimulated liver macrophage efferocytosis drives hepatic stellate cell activation and liver fibrosis.

  • Ki-Hyun Kim‎ et al.
  • Hepatology communications‎
  • 2022‎

Following inflammatory injury in the liver, neutrophils quickly infiltrate the injured tissue to defend against microbes and initiate the repair process; these neutrophils are short lived and rapidly undergo apoptosis. Hepatic stellate cells (HSCs) are the principal precursor cells that transdifferentiate into myofibroblast-like cells, which produce a large amount of extracellular matrix that promotes repair but can also lead to fibrosis if the injury becomes chronic. The matricellular protein cellular communication network factor 1 (CCN1) acts as a bridging molecule by binding phosphatidylserine in apoptotic cells and integrin αv β3 in phagocytes, thereby triggering efferocytosis or phagocytic clearance of the apoptotic cells. Here, we show that CCN1 induces liver macrophage efferocytosis of apoptotic neutrophils in carbon tetrachloride (CCl4 )-induced liver injury, leading to the production of activated transforming growth factor (TGF)-β1, which in turn induces HSC transdifferentiation into myofibroblast-like cells that promote fibrosis development. Consequently, knock-in mice expressing a single amino acid substitution in CCN1 rendering it unable to bind αv β3 or induce efferocytosis are impaired in neutrophil clearance, production of activated TGF-β1, and HSC transdifferentiation, resulting in greatly diminished liver fibrosis following exposure to CCl4 . Conclusion: These results reveal the crucial role of CCN1 in stimulating liver macrophage clearance of apoptotic neutrophils, a process that drives HSC transdifferentiation into myofibroblastic cells and underlies fibrogenesis in chronic liver injury.


Peroxisome proliferator-activated receptor γ activation ameliorates liver fibrosis-differential action of transcription factor EB and autophagy on hepatocytes and stellate cells.

  • Yunjin J Yum‎ et al.
  • Hepatology communications‎
  • 2023‎

Peroxisome proliferator-activated receptor γ (PPARγ) activation suppresses HSC activation and liver fibrosis. Moreover, autophagy is implicated in hepatic lipid metabolism. Here, we determined whether PPARγ activation ameliorates HSC activation by downregulating transcription factor EB (TFEB)-mediated autophagy.


Prolonged cenicriviroc therapy reduces hepatic fibrosis despite steatohepatitis in a diet-induced mouse model of nonalcoholic steatohepatitis.

  • Annie J Kruger‎ et al.
  • Hepatology communications‎
  • 2018‎

Nonalcoholic steatohepatitis (NASH) is a progressive liver disease projected to become the leading cause of cirrhosis and liver transplantation in the next decade. Cenicriviroc (CVC), a dual chemokine receptor 2 and 5 antagonist, prevents macrophage trafficking and is under clinical investigation for the treatment of human NASH fibrosis. We assessed the efficacy and durability of short and prolonged CVC therapy in a diet-induced mouse model of NASH, the choline deficient, L-amino acid-defined, high-fat diet (CDAHFD) model. C57BL/6 mice received 4 or 14 weeks of standard chow or the CDAHFD. CVC (10 mg/kg/day and 30 mg/kg/day for 4 weeks and 20 mg/kg/day and 30 mg/kg/day for 14 weeks) was initiated simultaneously with the CDAHFD. At 4 and 14 weeks, livers were harvested for histology and flow cytometric analyses of intrahepatic immune cells. High-dose CVC (30 mg/kg/day) therapy in CDAHFD mice for 4 or 14 weeks inhibited intrahepatic accumulation of Ly6Chigh bone marrow-derived macrophages. Prolonged CVC therapy (14 weeks) yielded no significant differences in the total intrahepatic macrophage populations among treatment groups but increased the frequency of intrahepatic anti-inflammatory macrophages in the high-dose CVC group. Despite ongoing steatohepatitis, there was significantly less fibrosis in CDAHFD mice receiving high-dose CVC for 14 weeks based on histologic and molecular markers, mirroring observations in human NASH CVC trials. CVC also directly inhibited the profibrotic gene signature of transforming growth factor-β-stimulated primary mouse hepatic stellate cells in vitro. Conclusion: CVC is a novel therapeutic agent that is associated with reduced fibrosis despite ongoing steatohepatitis. Its ability to alter intrahepatic macrophage populations and inhibit profibrogenic genes in hepatic stellate cells in NASH livers may contribute to its observed antifibrotic effect. (Hepatology Communications 2018;2:529-545).


Traf2 and NCK Interacting Kinase Is a Critical Regulator of Procollagen I Trafficking and Hepatic Fibrogenesis in Mice.

  • Samuel C Buchl‎ et al.
  • Hepatology communications‎
  • 2022‎

Hepatic fibrosis is driven by deposition of matrix proteins following liver injury. Hepatic stellate cells (HSCs) drive fibrogenesis, producing matrix proteins, including procollagen I, which matures into collagen I following secretion. Disrupting intracellular procollagen processing and trafficking causes endoplasmic reticulum stress and stress-induced HSC apoptosis and thus is an attractive antifibrotic strategy. We designed an immunofluorescence-based small interfering RNA (siRNA) screen to identify procollagen I trafficking regulators, hypothesizing that these proteins could serve as antifibrotic targets. A targeted siRNA screen was performed using immunofluorescence to detect changes in intracellular procollagen I. Tumor necrosis factor receptor associated factor 2 and noncatalytic region of tyrosine kinase-interacting kinase (TNIK) was identified and interrogated in vitro and in vivo using the TNIK kinase inhibitor NCB-0846 or RNA interference-mediated knockdown. Our siRNA screen identified nine genes whose knockdown promoted procollagen I retention, including the serine/threonine kinase TNIK. Genetic deletion or pharmacologic inhibition of TNIK through the small molecule inhibitor NCB-0846 disrupted procollagen I trafficking and secretion without impacting procollagen I expression. To investigate the role of TNIK in liver fibrogenesis, we analyzed human and murine livers, finding elevated TNIK expression in human cirrhotic livers and increased TNIK expression and kinase activity in both fibrotic mouse livers and activated primary human HSCs. Finally, we tested whether inhibition of TNIK kinase activity could limit fibrogenesis in vivo. Mice receiving NCB-0846 displayed reduced CCl4 -induced fibrogenesis compared to CCl4 alone, although α-smooth muscle actin levels were unaltered. Conclusions: Our siRNA screen effectively identified TNIK as a key kinase involved in procollagen I trafficking in vitro and hepatic fibrogenesis in vivo.


Emricasan Ameliorates Portal Hypertension and Liver Fibrosis in Cirrhotic Rats Through a Hepatocyte-Mediated Paracrine Mechanism.

  • Jordi Gracia-Sancho‎ et al.
  • Hepatology communications‎
  • 2019‎

In cirrhosis, liver microvascular dysfunction is a key factor increasing hepatic vascular resistance to portal blood flow, which leads to portal hypertension. De-regulated inflammatory and pro-apoptotic processes due to chronic injury play important roles in the dysfunction of liver sinusoidal cells. The present study aimed at characterizing the effects of the pan-caspase inhibitor emricasan on systemic and hepatic hemodynamics, hepatic cells phenotype, and underlying mechanisms in preclinical models of advanced chronic liver disease. We investigated the effects of 7-day emricasan on hepatic and systemic hemodynamics, liver function, hepatic microcirculatory function, inflammation, fibrosis, hepatic cells phenotype, and paracrine interactions in rats with advanced cirrhosis due to chronic CCl4 administration. The hepato-protective effects of emricasan were additionally investigated in cells isolated from human cirrhotic livers. Cirrhotic rats receiving emricasan showed significantly lower portal pressure than vehicle-treated animals with no changes in portal blood flow, indicating improved vascular resistance. Hemodynamic improvement was associated with significantly better liver function, reduced hepatic inflammation, improved phenotype of hepatocytes, liver sinusoidal endothelial cells, hepatic stellate cells and macrophages, and reduced fibrosis. In vitro experiments demonstrated that emricasan exerted its benefits directly improving hepatocytes' expression of specific markers and synthetic capacity, and ameliorated nonparenchymal cells through a paracrine mechanism mediated by small extracellular vesicles released by hepatocytes. Conclusion: This study demonstrates that emricasan improves liver sinusoidal microvascular dysfunction in cirrhosis, which leads to marked amelioration in fibrosis, portal hypertension and liver function, and therefore encourages its clinical evaluation in the treatment of advanced chronic liver disease.


A Microphysiological System for Studying Nonalcoholic Steatohepatitis.

  • Tomasz Kostrzewski‎ et al.
  • Hepatology communications‎
  • 2020‎

Nonalcoholic steatohepatitis (NASH) is the most severe form of nonalcoholic fatty liver disease (NAFLD), which to date has no approved drug treatments. There is an urgent need for better understanding of the genetic and molecular pathways that underlie NAFLD/NASH, and currently available preclinical models, be they in vivo or in vitro, do not fully represent key aspects of the human disease state. We have developed a human in vitro co-culture NASH model using primary human hepatocytes, Kupffer cells and hepatic stellate cells, which are cultured together as microtissues in a perfused three-dimensional microphysiological system (MPS). The microtissues were cultured in medium containing free fatty acids for at least 2 weeks, to induce a NASH-like phenotype. The co-culture microtissues within the MPS display a NASH-like phenotype, showing key features of the disease including hepatic fat accumulation, the production of an inflammatory milieu, and the expression of profibrotic markers. Addition of lipopolysaccharide resulted in a more pro-inflammatory milieu. In the model, obeticholic acid ameliorated the NASH phenotype. Microtissues were formed from both wild-type and patatin-like phospholipase domain containing 3 (PNPLA3) I148M mutant hepatic stellate cells. Stellate cells carrying the mutation enhanced the overall disease state of the model and in particular produced a more pro-inflammatory milieu. Conclusion: The MPS model displays a phenotype akin to advanced NAFLD or NASH and has utility as a tool for exploring mechanisms underlying the disease. Furthermore, we demonstrate that in co-culture the PNPLA3 I148M mutation alone can cause hepatic stellate cells to enhance the overall NASH disease phenotype.


Direct AMPK Activation Corrects NASH in Rodents Through Metabolic Effects and Direct Action on Inflammation and Fibrogenesis.

  • Pascale Gluais-Dagorn‎ et al.
  • Hepatology communications‎
  • 2022‎

No approved therapies are available for nonalcoholic steatohepatitis (NASH). Adenosine monophosphate-activated protein kinase (AMPK) is a central regulator of cell metabolism; its activation has been suggested as a therapeutic approach to NASH. Here we aimed to fully characterize the potential for direct AMPK activation in preclinical models and to determine mechanisms that could contribute to efficacy for this disease. A novel small-molecule direct AMPK activator, PXL770, was used. Enzyme activity was measured with recombinant complexes. De novo lipogenesis (DNL) was quantitated in vivo and in mouse and human primary hepatocytes. Metabolic efficacy was assessed in ob/ob and high-fat diet-fed mice. Liver histology, biochemical measures, and immune cell profiling were assessed in diet-induced NASH mice. Direct effects on inflammation and fibrogenesis were assessed using primary mouse and human hepatic stellate cells, mouse adipose tissue explants, and human immune cells. PXL770 directly activated AMPK in vitro and reduced DNL in primary hepatocytes. In rodent models with metabolic syndrome, PXL770 improved glycemia, dyslipidemia, and insulin resistance. In mice with NASH, PXL770 reduced hepatic steatosis, ballooning, inflammation, and fibrogenesis. PXL770 exhibited direct inhibitory effects on pro-inflammatory cytokine production and activation of primary hepatic stellate cells. Conclusion: In rodent models, direct activation of AMPK is sufficient to produce improvements in all core components of NASH and to ameliorate related hyperglycemia, dyslipidemia, and systemic inflammation. Novel properties of direct AMPK activation were also unveiled: improved insulin resistance and direct suppression of inflammation and fibrogenesis. Given effects also documented in human cells (reduced DNL, suppression of inflammation and stellate cell activation), these studies support the potential for direct AMPK activation to effectively treat patients with NASH.


Identification of a novel alpha-fetoprotein-expressing cell population induced by the Jagged1/Notch2 signal in murine fibrotic liver.

  • Yasuhiro Nakano‎ et al.
  • Hepatology communications‎
  • 2017‎

The liver is well known to possess high regenerative capacity in response to partial resection or tissue injury. However, liver regeneration is often impaired in the case of advanced liver fibrosis/cirrhosis when mature hepatocytes can hardly self-proliferate. Hepatic progenitor cells have been implicated as a source of hepatocytes in regeneration of the fibrotic liver. Although alpha-fetoprotein (AFP) is known as a clinical marker of progenitor cell induction in injured/fibrotic adult liver, the origin and features of such AFP-producing cells are not fully understood. Here, we demonstrate a unique and distinct AFP-expressing cell population that is induced by the Jagged1/Notch2 signal in murine fibrotic liver. Following repeated carbon tetrachloride injections, a significant number of AFP-positive cells with high proliferative ability were observed along the fibrous septa depending on the extent of liver fibrosis. These AFP-positive cells exhibited features of immature hepatocytes that were stained positively for hepatocyte-lineage markers, such as albumin and hepatocyte nuclear factor 4 alpha, and a stem/progenitor cell marker Sox9. A combination of immunohistological examination of fibrotic liver tissues and coculture experiments with primary hepatocytes and hepatic stellate cells indicated that increased Jagged1 expression in activated hepatic stellate cells stimulated Notch2 signaling and up-regulated AFP expression in adjacent hepatocytes. The mobilization and proliferation of AFP-positive cells in fibrotic liver were further enhanced after partial hepatectomy, which was significantly suppressed in Jagged1-conditional knockout mice. Finally, forced expression of the intracellular domain of Notch2 in normal liver induced a small number of AFP-expressing hepatocytes in vivo. Conclusion: Insight is provided into a novel pathophysiological role of Jagged1/Notch2 signaling in the induction of AFP-positive cells in fibrotic liver through the interaction between hepatocytes and activated hepatic stellate cells. (Hepatology Communications 2017;1:215-229).


Silencing of STE20-type kinase TAOK1 confers protection against hepatocellular lipotoxicity through metabolic rewiring.

  • Ying Xia‎ et al.
  • Hepatology communications‎
  • 2023‎

NAFLD has become the leading cause of chronic liver disease worldwide afflicting about one quarter of the adult population. NASH is a severe subtype of NAFLD, which in addition to hepatic steatosis connotes liver inflammation and hepatocyte ballooning. In light of the exponentially increasing prevalence of NAFLD, it is imperative to gain a better understanding of its molecular pathogenesis. The aim of this study was to examine the potential role of STE20-type kinase TAOK1 -a hepatocellular lipid droplet-associated protein-in the regulation of liver lipotoxicity and NAFLD etiology.


The role of human cytochrome P450 2E1 in liver inflammation and fibrosis.

  • Jun Xu‎ et al.
  • Hepatology communications‎
  • 2017‎

Cytochrome P450 2E1 (CYP2E1) plays an important role in alcohol and toxin metabolism by catalyzing the conversion of substrates into more polar metabolites and producing reactive oxygen species. Reactive oxygen species-induced oxidative stress promotes hepatocyte injury and death, which in turn induces inflammation, activation of hepatic stellate cells, and liver fibrosis. Here, we analyzed mice expressing only the human CYP2E1 gene (hCYP2E1) to determine differences in hCYP2E1 versus endogenous mouse Cyp2e1 function with different liver injuries. After intragastric alcohol feeding, CYP2E1 expression was induced in both hCYP2E1 and wild-type (Wt) mice. hCYP2E1 mice had greater inflammation, fibrosis, and lipid peroxidation but less hepatic steatosis. In addition, hCYP2E1 mice demonstrated increased expression of fibrogenic and proinflammatory genes but decreased expression of de novo lipogenic genes compared to Wt mice. Lipidomics of free fatty acid, triacylglycerol, diacylglycerol, and cholesterol ester species and proinflammatory prostaglandins support these conclusions. Carbon tetrachloride-induced injury suppressed expression of both mouse and human CYP2E1, but again hCYP2E1 mice exhibited greater hepatic stellate cell activation and fibrosis than Wt controls with comparable expression of proinflammatory genes. By contrast, 14-day bile duct ligation induced comparable cholestatic injury and fibrosis in both genotypes. Conclusion: Alcohol-induced liver fibrosis but not hepatic steatosis is more severe in the hCYP2E1 mouse than in the Wt mouse, demonstrating the use of this model to provide insight into the pathogenesis of alcoholic liver disease. (Hepatology Communications 2017;1:1043-1057).


The new-generation pan-peroxisome proliferator-activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis.

  • Guillaume Wettstein‎ et al.
  • Hepatology communications‎
  • 2017‎

IVA337 is a pan-peroxisome proliferator-activated receptor (PPAR) agonist with moderate and well-balanced activity on the three PPAR isoforms (α, γ, δ). PPARs are regulators of lipid metabolism, inflammation, insulin resistance, and fibrogenesis. Different single or dual PPAR agonists have been investigated for their therapeutic potential in nonalcoholic steatohepatitis (NASH), a chronic liver condition in which steatosis coexists with necroinflammation, potentially leading to liver fibrosis and cirrhosis. Clinical results have demonstrated variable improvements of histologically assessed hepatic lesions depending on the profile of the tested drug, suggesting that concomitant activation of the three PPAR isoforms would translate into a more substantial therapeutic outcome in patients with NASH. We investigated the effects of IVA337 on several preclinical models reproducing the main metabolic and hepatic features associated with NASH. These models comprised a diet-induced obesity model (high-fat/high-sucrose diet); a methionine- and choline-deficient diet; the foz/foz model; the CCl4-induced liver fibrosis model (prophylactic and therapeutic) and human primary hepatic stellate cells. IVA337 normalized insulin sensitivity while controlling body weight gain, adiposity index, and serum triglyceride increases; it decreased liver steatosis, inflammation, and ballooning. IVA337 demonstrated preventive and curative effects on fibrosis in the CCl4 model and inhibited proliferation and activation of human hepatic stellate cells, the key cells driving liver fibrogenesis in NASH. Moreover, IVA337 inhibited the expression of (pro)fibrotic and inflammasome genes while increasing the expression of β-oxidation-related and fatty acid desaturation-related genes in both the methionine- and choline-deficient diet and the foz/foz model. For all models, IVA337 displayed an antifibrotic efficacy superior to selective PPARα, PPARδ, or PPARγ agonists. Conclusion: The therapeutic potential of IVA337 for the treatment of patients with NASH is supported by our data. (Hepatology Communications 2017;1:524-537).


Combatting Fibrosis: Exosome-Based Therapies in the Regression of Liver Fibrosis.

  • Li Chen‎ et al.
  • Hepatology communications‎
  • 2019‎

Hepatic fibrosis results from chronic injury and inflammation in the liver and leads to cirrhosis, liver failure, and portal hypertension. Understanding the molecular mechanisms underlying hepatic fibrosis has advanced the prospect of developing therapies for regression of the disease. Resolution of fibrosis requires a reduction of proinflammatory and fibrogenic cytokines, a decrease in extracellular matrix (ECM) protein production, an increase in collagenase activity, and finally, a disappearance of activated myofibroblasts. Exosomes are nanovesicles of endocytic origin secreted by most cell types. They epigenetically reprogram and alter the phenotype of their recipient cells and hold great promise for the reversal of fibrosis. Recent studies have shown that exosomes function as conduits for intercellular transfer and contain all the necessary components to induce resolution of fibrosis, including the ability to (1) inhibit macrophage activation and cytokine secretion, (2) remodel ECM production and decrease fibrous scars, and (3) inactivate hepatic stellate cells, a major myofibroblast population. Here, we discuss the research involving the regression of hepatic fibrosis. We focus on the newly discovered roles of exosomes during fibrogenesis and as a therapy for fibrosis reversal. We also emphasize the novel discoveries of exosome-based antifibrotic treatments in vitro and in vivo.


Liver Glycogen Phosphorylase Deficiency Leads to Profibrogenic Phenotype in a Murine Model of Glycogen Storage Disease Type VI.

  • Lane H Wilson‎ et al.
  • Hepatology communications‎
  • 2019‎

Mutations in the liver glycogen phosphorylase (Pygl) gene are associated with the diagnosis of glycogen storage disease type VI (GSD-VI). To understand the pathogenesis of GSD-VI, we generated a mouse model with Pygl deficiency (Pygl -/-). Pygl -/- mice exhibit hepatomegaly, excessive hepatic glycogen accumulation, and low hepatic free glucose along with lower fasting blood glucose levels and elevated blood ketone bodies. Hepatic glycogen accumulation in Pygl -/- mice increases with age. Masson's trichrome and picrosirius red staining revealed minimal to mild collagen deposition in periportal, subcapsular, and/or perisinusoidal areas in the livers of old Pygl -/- mice (>40 weeks). Consistently, immunohistochemical analysis showed the number of cells positive for alpha smooth muscle actin (α-SMA), a marker of activated hepatic stellate cells, was increased in the livers of old Pygl -/- mice compared with those of age-matched wild-type (WT) mice. Furthermore, old Pygl -/- mice had inflammatory infiltrates associated with hepatic vessels in their livers along with up-regulated hepatic messenger RNA levels of C-C chemokine ligand 5 (Ccl5/Rantes) and monocyte chemoattractant protein 1 (Mcp-1), indicating inflammation, while age-matched WT mice did not. Serum levels of aspartate aminotransferase and alanine aminotransferase were elevated in old Pygl -/- mice, indicating liver damage. Conclusion: Pygl deficiency results in progressive accumulation of hepatic glycogen with age and liver damage, inflammation, and collagen deposition, which can increase the risk of liver fibrosis. Collectively, the Pygl-deficient mouse recapitulates clinical features in patients with GSD-VI and provides a model to elucidate the mechanisms underlying hepatic complications associated with defective glycogen metabolism.


Role of monocyte chemoattractant protein-1 in liver fibrosis with transient myeloproliferative disorder in down syndrome.

  • Kenichiro Kobayashi‎ et al.
  • Hepatology communications‎
  • 2018‎

Liver fibrosis is a common complication associated with transient myeloproliferative disorder (TMD) in Down syndrome (DS). The exact molecular pathogenesis that regulates disease progression is largely unknown. We recently found serum and/or urinary monocyte chemoattractant protein-1 (MCP-1) as a novel biomarker of liver fibrosis. This study was an in vitro analysis to investigate the fibrogenic activity of MCP-1 using the collagen-producing LX-2 human hepatic stellate cell line. We also examined the fibrogenic activity of serum from a male neonate with DS in whom late-onset liver fibrosis developed even after the resolution of TMD. MCP-1 stimulated both cell growth and collagen synthesis of LX-2 in a dose-dependent manner. Patient serum obtained during the active disease phase significantly up-regulated fibrogenic activity, which was suppressed in the presence of MCP-1-blocking antibody. Transient transforming growth factor beta 1 stimulation primed LX-2 to induce prolonged hypersecretion of MCP-1 in the culture supernatant and in collagen synthesis, which was suppressed with MCP-1 blocking antibody as well. Conclusion: MCP-1 accounts for the prolonged activation of collagen-producing hepatic stellate cells in both a paracrine and autocrine manner, thereby promoting liver fibrosis. Anti-cytokine therapy targeting the fibrogenic cytokines of MCP-1, for example, herbal medicine, could provide a new therapeutic intervention for liver fibrosis associated with TMD in DS. (Hepatology Communications 2018;2:230-236).


Activin B promotes the initiation and progression of liver fibrosis.

  • Yan Wang‎ et al.
  • Hepatology communications‎
  • 2022‎

The role of activin B, a transforming growth factor β (TGFβ) superfamily cytokine, in liver health and disease is largely unknown. We aimed to investigate whether activin B modulates liver fibrogenesis. Liver and serum activin B, along with its analog activin A, were analyzed in patients with liver fibrosis from different etiologies and in mouse acute and chronic liver injury models. Activin B, activin A, or both was immunologically neutralized in mice with progressive or established carbon tetrachloride (CCl4 )-induced liver fibrosis. Hepatic and circulating activin B was increased in human patients with liver fibrosis caused by several liver diseases. In mice, hepatic and circulating activin B exhibited persistent elevation following the onset of several types of liver injury, whereas activin A displayed transient increases. The results revealed a close correlation of activin B with liver injury regardless of etiology and species. Injured hepatocytes produced excessive activin B. Neutralizing activin B largely prevented, as well as improved, CCl4 -induced liver fibrosis, which was augmented by co-neutralizing activin A. Mechanistically, activin B mediated the activation of c-Jun-N-terminal kinase (JNK), the induction of inducible nitric oxide synthase (iNOS) expression, and the maintenance of poly (ADP-ribose) polymerase 1 (PARP1) expression in injured livers. Moreover, activin B directly induced a profibrotic expression profile in hepatic stellate cells (HSCs) and stimulated these cells to form a septa structure. Conclusions: We demonstrate that activin B, cooperating with activin A, mediates the activation or expression of JNK, iNOS, and PARP1 and the activation of HSCs, driving the initiation and progression of liver fibrosis.


FGF1 Signaling Modulates Biliary Injury and Liver Fibrosis in the Mdr2-/- Mouse Model of Primary Sclerosing Cholangitis.

  • April O'Brien‎ et al.
  • Hepatology communications‎
  • 2022‎

Fibroblast growth factor 1 (FGF1) belongs to a family of growth factors involved in cellular growth and division. MicroRNA 16 (miR-16) is a regulator of gene expression, which is dysregulated during liver injury and insult. However, the role of FGF1 in the progression of biliary proliferation, senescence, fibrosis, inflammation, angiogenesis, and its potential interaction with miR-16, are unknown. In vivo studies were performed in male bile duct-ligated (BDL, 12-week-old) mice, multidrug resistance 2 knockout (Mdr2-/-) mice (10-week-old), and their corresponding controls, treated with recombinant human FGF1 (rhFGF1), fibroblast growth factor receptor (FGFR) antagonist (AZD4547), or anti-FGF1 monoclonal antibody (mAb). In vitro, the human cholangiocyte cell line (H69) and human hepatic stellate cells (HSCs) were used to determine the expression of proliferation, fibrosis, angiogenesis, and inflammatory genes following rhFGF1 treatment. PSC patient and control livers were used to evaluate FGF1 and miR-16 expression. Intrahepatic bile duct mass (IBDM), along with hepatic fibrosis and inflammation, increased in BDL mice treated with rhFGF1, with a corresponding decrease in miR-16, while treatment with AZD4547 or anti-FGF1 mAb decreased hepatic fibrosis, IBDM, and inflammation in BDL and Mdr2-/- mice. In vitro, H69 and HSCs treated with rhFGF1 had increased expression of proliferation, fibrosis, and inflammatory markers. PSC samples also showed increased FGF1 and FGFRs with corresponding decreases in miR-16 compared with healthy controls. Conclusion: Our study demonstrates that suppression of FGF1 and miR-16 signaling decreases the presence of hepatic fibrosis, biliary proliferation, inflammation, senescence, and angiogenesis. Targeting the FGF1 and miR-16 axis may provide therapeutic options in treating cholangiopathies such as PSC.


Liver-Targeted Angiotensin Converting Enzyme 2 Therapy Inhibits Chronic Biliary Fibrosis in Multiple Drug-Resistant Gene 2-Knockout Mice.

  • Indu G Rajapaksha‎ et al.
  • Hepatology communications‎
  • 2019‎

There is a large unmet need for effective therapies for cholestatic disorders, including primary sclerosing cholangitis (PSC), a disease that commonly results in liver failure. Angiotensin (Ang) II of the renin Ang system (RAS) is a potent profibrotic peptide, and Ang converting enzyme 2 (ACE2) of the alternate RAS breaks down Ang II to antifibrotic peptide Ang-(1-7). In the present study, we investigated long-term effects of ACE2 delivered by an adeno-associated viral vector and short-term effects of Ang-(1-7) peptide in multiple drug-resistant gene 2-knockout (Mdr2-KO) mice. These mice develop progressive biliary fibrosis with pathologic features closely resembling those observed in PSC. A single intraperitoneal injection of ACE2 therapy markedly reduced liver injury (P < 0.05) and biliary fibrosis (P < 0.01) at both established (3-6 months of age) and advanced (7-9 months of age) disease compared to control vector-injected Mdr2-KO mice. This was accompanied by increased hepatic Ang-(1-7) levels (P < 0.05) with concomitant reduction in hepatic Ang II levels (P < 0.05) compared to controls. Moreover, Ang-(1-7) peptide infusion improved liver injury (P < 0.05) and biliary fibrosis (P < 0.0001) compared to saline-infused disease controls. The therapeutic effects of both ACE2 therapy and Ang-(1-7) infusion were associated with significant (P < 0.01) reduction in hepatic stellate cell (HSC) activation and collagen expression. While ACE2 therapy prevented the loss of epithelial characteristics of hepatocytes and/or cholangiocytes in vivo, Ang-(1-7) prevented transdifferentiation of human cholangiocytes (H69 cells) into the collagen-secreting myofibroblastic phenotype in vitro. We showed that an increased ratio of hepatic Ang-(1-7) to Ang II levels by ACE2 therapy results in the inhibition of HSC activation and biliary fibrosis. Conclusion: ACE2 therapy has the potential to treat patients with biliary diseases, such as PSC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: