2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Red Cell Microparticles Suppress Hematoma Growth Following Intracerebral Hemorrhage in Chronic Nicotine-Exposed Rats.

  • Ashish K Rehni‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Spontaneous intracerebral hemorrhage (sICH) is a disabling stroke sub-type, and tobacco use is a prominent risk factor for sICH. We showed that chronic nicotine exposure enhances bleeding post-sICH. Reduction of hematoma growth is a promising effective therapy for sICH in smoking subjects. Red-blood-cell-derived microparticles (RMPs) are hemostatic agents that limit hematoma expansion following sICH in naïve rats. Considering the importance of testing the efficacy of experimental drugs in animal models with a risk factor for a disease, we tested RMP efficacy and the therapeutic time window in limiting hematoma growth post-sICH in rats exposed to nicotine. Young rats were chronically treated with nicotine using osmotic pumps. sICH was induced in rats using an injection of collagenase in the right striatum. Vehicle/RMPs were administered intravenously. Hematoma volume and neurological impairment were quantified ≈24 h after sICH. Hematoma volumes in male and female nicotine-exposed rats that were treated with RMPs at 2 h post-sICH were significantly lower by 26 and 31% when compared to their respective control groups. RMP therapy was able to limit hematoma volume when administered up to 4.5 h post-sICH in animals of both sexes. Therefore, RMPs may limit hematoma growth in sICH patients exposed to tobacco use.


The Effect of Minimally Invasive Hematoma Aspiration on the JNK Signal Transduction Pathway after Experimental Intracerebral Hemorrhage in Rats.

  • Haitao Pei‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

To explore the effect of minimally invasive hematoma aspiration (MIHA) on the c-Jun NH₂-terminal kinase (JNK) signal transduction pathway after intracerebral hemorrhage (ICH).


Anti-Inflammatory Drug Therapy in Chronic Subdural Hematoma: A Systematic Review and Meta-Analysis of Prospective Randomized, Double-Blind and Placebo-Controlled Trials.

  • Martin Vychopen‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Althoughanti-inflammatory drug therapy has been identified as potentially beneficial for patients suffering from chronic subdural hematoma (cSDH), contemporary literature presents contradictory results. In this meta-analysis, we aimed to investigate the impact of anti-inflammatory drug therapy on mortality and outcome. We searched for eligible randomized, placebo-controlled prospective trials (RTCs) on PubMed, Embase and Medline until July 2022. From 97 initially identified articles, five RTCs met the criteria and were included in our meta-analysis. Our results illustrate significantly lower rates of recurrent cSDH (OR: 0.35; 95% CI: 0.21-0.58, p = 0.0001) in patients undergoing anti-inflammatory therapy. In the subgroup of patients undergoing primary conservative treatment, anti-inflammatory therapy was associated with lower rates of "switch to surgery" cases (OR: 0.30; 95% CI: 0.14-0.63, p = 0.002). Despite these findings, anti-inflammatory drugs seemed to be associated with higher mortality rates in patients undergoing surgery (OR: 1.76; 95% CI: 1.03-3.01, p = 0.04), although in the case of primary conservative treatment, no effect on mortality has been observed (OR: 2.45; 95% CI: 0.35-17.15, p = 0.37). Further multicentric prospective randomized trials are needed to evaluate anti-inflammatory drugs as potentially suitable therapy for asymptomatic patients with cSDH to avoid the necessity of surgical hematoma evacuation on what are predominantly elderly, vulnerable, patients.


Early pH Changes in Musculoskeletal Tissues upon Injury-Aerobic Catabolic Pathway Activity Linked to Inter-Individual Differences in Local pH.

  • Julia C Berkmann‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Local pH is stated to acidify after bone fracture. However, the time course and degree of acidification remain unknown. Whether the acidification pattern within a fracture hematoma is applicable to adjacent muscle hematoma or is exclusive to this regenerative tissue has not been studied to date. Thus, in this study, we aimed to unravel the extent and pattern of acidification in vivo during the early phase post musculoskeletal injury. Local pH changes after fracture and muscle trauma were measured simultaneously in two pre-clinical animal models (sheep/rats) immediately after and up to 48 h post injury. The rat fracture hematoma was further analyzed histologically and metabolomically. In vivo pH measurements in bone and muscle hematoma revealed a local acidification in both animal models, yielding mean pH values in rats of 6.69 and 6.89, with pronounced intra- and inter-individual differences. The metabolomic analysis of the hematomas indicated a link between reduction in tricarboxylic acid cycle activity and pH, thus, metabolic activity within the injured tissues could be causative for the different pH values. The significant acidification within the early musculoskeletal hematoma could enable the employment of the pH for novel, sought-after treatments that allow for spatially and temporally controlled drug release.


Influence of Menopause on Inflammatory Cytokines during Murine and Human Bone Fracture Healing.

  • Verena Fischer‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Postmenopausal females display a chronic inflammatory phenotype with higher levels of circulating pro-inflammatory cytokines. Furthermore, the inflammatory response to injury may be altered under estrogen-deficiency, because it was shown previously that estrogen-deficient mice displayed increased levels of the inflammatory cytokines Midkine (Mdk) and Interleukin-6 (IL-6) in the early fracture hematoma. Because a balanced immune response to fracture is required for successful bone regeneration, this might contribute to the delayed fracture healing frequently observed in osteoporotic, postmenopausal fracture patients. In this study, we aimed to investigate whether further cytokines in addition to Mdk and IL-6 might be affected by estrogen-deficiency after fracture in mice and whether these cytokines are also relevant during human fracture healing. Additionally, we aimed to investigate whether serum from male vs. female fracture patients affects osteogenic differentiation of human mesenchymal stem cells (MSCs). To address these questions, female mice were either sham-operated or ovariectomized (OVX) and subjected to standardized femur osteotomy. A broad panel of pro- and anti-inflammatory cytokines was determined systemically and locally in the fracture hematoma. In a translational approach, serum was collected from healthy controls and patients with an isolated fracture. Mdk and IL-6 serum levels were determined at day 0, day 14 and day 42 after fracture. Subgroup analysis was performed to investigate differences between male and female fracture patients after menopause. In an in vitro approach, human MSCs were cultured with the collected patient serum and osteogenic differentiation was assessed by qPCR and alkaline-phosphatase staining. Our results suggest an important role for the pro-inflammatory cytokines Mdk and IL-6 in the response to fracture in estrogen-deficient mice among all of the measured inflammatory mediators. Notably, both cytokines were also significantly increased in the serum of patients after fracture. However, only Mdk serum levels differed significantly between male and female fracture patients after menopause. MSCs cultivated with serum from female fracture patients displayed significantly reduced osteogenic differentiation, which was attenuated by Mdk-antibody treatment. In conclusion, our study demonstrated increased Mdk levels after fracture in OVX mice and female fracture patients after menopause. Because Mdk is a negative regulator of bone formation, this might contribute to impaired osteoporotic fracture healing.


Effect of Pretreatment with the NADPH Oxidase Inhibitor Apocynin on the Therapeutic Efficacy of Human Placenta-Derived Mesenchymal Stem Cells in Intracerebral Hemorrhage.

  • Saehong Min‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Several studies have demonstrated the beneficial effect of mesenchymal stem cells (MSCs) on intracerebral hemorrhage (ICH). Enhancement of the therapeutic efficacy of MSCs in ICH is necessary, considering the diseases high association with mortality and morbidity. Various preconditioning methods to enhance the beneficial properties of MSCs have been introduced. We suggested apocynin, a well-known nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, as a novel preconditioning regimen to enhance the therapeutic efficacy of MSCs in ICH. Rat ICH models were made using bacterial collagenase. 24 h after ICH induction, the rats were randomly divided into apocynin-preconditioned MSC-treated (Apo-MSC), naïve MSC-treated and control groups. Hematoma volume, brain edema, and degenerating neuron count were compared at 48 h after the ICH induction. The expression of tight junction proteins (occludin, zona occludens [ZO]-1) were also compared. Hematoma size, hemispheric enlargement and degenerating neuron count were significantly lower in the Apo-MSC group than in the naïve MSC group (p = 0.004, 0.013 and 0.043, respectively), while the expression of occludin was higher (p = 0.024). Apocynin treatment enhances the therapeutic efficacy of MSCs in ICH in the acute stage, through the improvement of the beneficial properties of MSCs, such as neuroprotection and the reinforcement of endovascular integrity of cerebral vasculature.


NPAS4 Exacerbates Pyroptosis via Transcriptionally Regulating NLRP6 in the Acute Phase of Intracerebral Hemorrhage in Mice.

  • Dan Jian‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Intracerebral hemorrhage (ICH) is a severe cerebrovascular disease with a high disability rate and high mortality, and pyroptosis is a type of programmed cell death in the acute phase of ICH. Neuronal Per-Arnt-Sim domain protein 4 (Npas4) is a specific transcription factor highly expressed in the nervous system, yet the role of NPAS4 in ICH-induced pyroptosis is not fully understood. NLR family Pyrin-domain-containing 6 (NLRP6), a new member of the Nod-like receptor family, aggravates pyroptosis via activating cysteine protease-1 (Caspase-1) and Caspase-11. In this study, we found that NPAS4 was upregulated in human and mouse peri-hematoma brain tissues and peaked at approximately 24 h after ICH modeling. Additionally, NPAS4 knockdown improved neurologic dysfunction and brain damage induced by ICH in mice after 24 h. Meanwhile, inhibiting NPAS4 expression reduced the levels of myeloperoxidase (MPO)-positive cells and Caspase-1/TUNEL-double-positive cells and decreased cleaved Caspase-1, cleaved Caspase-11, and N-terminal GSDMD levels. Consistently, NPAS4 overexpression reversed the above alternations after ICH in the mice. Moreover, NPAS4 could interact with the Nlrp6 promoter region (-400--391 bp and -33--24 bp) and activate the transcription of Nlrp6. Altogether, our study demonstrated that NPAS4, as a transcription factor, can exacerbate pyroptosis and transcriptionally activate NLRP6 in the acute phase of intracerebral hemorrhage in mice.


Heme Oxygenase Protects against Placental Vascular Inflammation and Abortion by the Alarmin Heme in Mice.

  • Christiaan M Suttorp‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Both infectious as non-infectious inflammation can cause placental dysfunction and pregnancy complications. During the first trimester of human gestation, when palatogenesis takes place, intrauterine hematoma and hemorrhage are common phenomena, causing the release of large amounts of heme, a well-known alarmin. We postulated that exposure of pregnant mice to heme during palatogenesis would initiate oxidative and inflammatory stress, leading to pathological pregnancy, increasing the incidence of palatal clefting and abortion. Both heme oxygenase isoforms (HO-1 and HO-2) break down heme, thereby generating anti-oxidative and -inflammatory products. HO may thus counteract these heme-induced injurious stresses. To test this hypothesis, we administered heme to pregnant CD1 outbred mice at Day E12 by intraperitoneal injection in increasing doses: 30, 75 or 150 μmol/kg body weight (30H, 75H or 150H) in the presence or absence of HO-activity inhibitor SnMP from Day E11. Exposure to heme resulted in a dose-dependent increase in abortion. At 75H half of the fetuses where resorbed, while at 150H all fetuses were aborted. HO-activity protected against heme-induced abortion since inhibition of HO-activity aggravated heme-induced detrimental effects. The fetuses surviving heme administration demonstrated normal palatal fusion. Immunostainings at Day E16 demonstrated higher numbers of ICAM-1 positive blood vessels, macrophages and HO-1 positive cells in placenta after administration of 75H or SnMP + 30H. Summarizing, heme acts as an endogenous "alarmin" during pregnancy in a dose-dependent fashion, while HO-activity protects against heme-induced placental vascular inflammation and abortion.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: