Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Maternal nicotine exposure induces congenital heart defects in the offspring of mice.

  • Elizabeth R Greco‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2022‎

Maternal cigarette smoking is a risk factor for congenital heart defects (CHDs). Nicotine replacement therapies are often offered to pregnant women following failed attempts of smoking cessation. However, the impact of nicotine on embryonic heart development is not well understood. In the present study, the effects of maternal nicotine exposure (MNE) during pregnancy on foetal heart morphogenesis were studied. Adult female mice were treated with nicotine using subcutaneous osmotic pumps at 0.75 or 1.5 mg/kg/day and subsequently bred with male mice. Our results show that MNE dose-dependently increased CHDs in foetal mice. CHDs included atrial and ventricular septal defects, double outlet right ventricle, unguarded tricuspid orifice, hypoplastic left ventricle, thickened aortic and pulmonary valves, and ventricular hypertrophy. MNE also significantly reduced coronary artery size and vessel abundance in foetal hearts. Moreover, MNE resulted in higher levels of oxidative stress and altered the expression of key cardiogenic regulators in the developing heart. Nicotine exposure reduced epicardial-to-mesenchymal transition in foetal hearts. In conclusion, MNE induces CHDs and coronary artery malformation in mice. These findings provide insight into the adverse outcomes of foetuses by MNE during pregnancy.


Sapropterin Treatment Prevents Congenital Heart Defects Induced by Pregestational Diabetes Mellitus in Mice.

  • Anish Engineer‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Background Tetrahydrobiopterin is a cofactor of endothelial NO synthase ( eNOS ), which is critical to embryonic heart development. We aimed to study the effects of sapropterin (Kuvan), an orally active synthetic form of tetrahydrobiopterin on eNOS uncoupling and congenital heart defects ( CHD s) induced by pregestational diabetes mellitus in mice. Methods and Results Adult female mice were induced to pregestational diabetes mellitus by streptozotocin and bred with normal male mice to produce offspring. Pregnant mice were treated with sapropterin or vehicle during gestation. CHD s were identified by histological analysis. Cell proliferation, eNOS dimerization, and reactive oxygen species production were assessed in the fetal heart. Pregestational diabetes mellitus results in a spectrum of CHD s in their offspring. Oral treatment with sapropterin in the diabetic dams significantly decreased the incidence of CHD s from 59% to 27%, and major abnormalities, such as atrioventricular septal defect and double-outlet right ventricle, were absent in the sapropterin-treated group. Lineage tracing reveals that pregestational diabetes mellitus results in decreased commitment of second heart field progenitors to the outflow tract, endocardial cushions, and ventricular myocardium of the fetal heart. Notably, decreased cell proliferation and cardiac transcription factor expression induced by maternal diabetes mellitus were normalized with sapropterin treatment. Furthermore, sapropterin administration in the diabetic dams increased eNOS dimerization and lowered reactive oxygen species levels in the fetal heart. Conclusions Sapropterin treatment in the diabetic mothers improves eNOS coupling, increases cell proliferation, and prevents the development of CHD s in the offspring. Thus, sapropterin may have therapeutic potential in preventing CHD s in pregestational diabetes mellitus.


NOX2 Is Critical to Endocardial to Mesenchymal Transition and Heart Development.

  • Hoda Moazzen‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2020‎

NADPH oxidases (NOX) are a major source of reactive oxygen species (ROS) production in the heart. ROS signaling regulates gene expression, cell proliferation, apoptosis, and migration. However, the role of NOX2 in embryonic heart development remains elusive. We hypothesized that deficiency of Nox2 disrupts endocardial to mesenchymal transition (EndMT) and results in congenital septal and valvular defects. Our data show that 34% of Nox2-/- neonatal mice had various congenital heart defects (CHDs) including atrial septal defects (ASD), ventricular septal defects (VSD), atrioventricular canal defects (AVCD), and malformation of atrioventricular and aortic valves. Notably, Nox2-/- embryonic hearts show abnormal development of the endocardial cushion as evidenced by decreased cell proliferation and an increased rate of apoptosis. Additionally, Nox2 deficiency disrupted EndMT of atrioventricular cushion explants ex vivo. Furthermore, treatment with N-acetylcysteine (NAC) to reduce ROS levels in the wild-type endocardial cushion explants decreased the number of cells undergoing EndMT. Importantly, deficiency of Nox2 was associated with reduced expression of Gata4, Tgfβ2, Bmp2, Bmp4, and Snail1, which are critical to endocardial cushion and valvoseptal development. We conclude that NOX2 is critical to EndMT, endocardial cushion cell proliferation, and normal embryonic heart development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: