2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells.

  • Jerome Thiery‎ et al.
  • Nature immunology‎
  • 2011‎

How the pore-forming protein perforin delivers apoptosis-inducing granzymes to the cytosol of target cells is uncertain. Perforin induces a transient Ca2+ flux in the target cell, which triggers a process to repair the damaged cell membrane. As a consequence, both perforin and granzymes are endocytosed into enlarged endosomes called 'gigantosomes'. Here we show that perforin formed pores in the gigantosome membrane, allowing endosomal cargo, including granzymes, to be gradually released. After about 15 min, gigantosomes ruptured, releasing their remaining content. Thus, perforin delivers granzymes by a two-step process that involves first transient pores in the cell membrane that trigger the endocytosis of granzyme and perforin and then pore formation in endosomes to trigger cytosolic release.


Cytotoxic CD8+ T cells recognize and kill Plasmodium vivax-infected reticulocytes.

  • Caroline Junqueira‎ et al.
  • Nature medicine‎
  • 2018‎

Plasmodium vivax causes approximately 100 million clinical malaria cases yearly1,2. The basis of protective immunity is poorly understood and thought to be mediated by antibodies3,4. Cytotoxic CD8+ T cells protect against other intracellular parasites by detecting parasite peptides presented by human leukocyte antigen class I on host cells. Cytotoxic CD8+ T cells kill parasite-infected mammalian cells and intracellular parasites by releasing their cytotoxic granules5,6. Perforin delivers the antimicrobial peptide granulysin and death-inducing granzymes into the host cell, and granulysin then delivers granzymes into the parasite. Cytotoxic CD8+ T cells were thought to have no role against Plasmodium spp. blood stages because red blood cells generally do not express human leukocyte antigen class I7. However, P. vivax infects reticulocytes that retain the protein translation machinery. Here we show that P. vivax-infected reticulocytes express human leukocyte antigen class I. Infected patient circulating CD8+ T cells highly express cytotoxic proteins and recognize and form immunological synapses with P. vivax-infected reticulocytes in a human leukocyte antigen-dependent manner, releasing their cytotoxic granules to kill both host cell and intracellular parasite, preventing reinvasion. P. vivax-infected reticulocytes and parasite killing is perforin independent, but depends on granulysin, which generally efficiently forms pores only in microbial membranes8. We find that P. vivax depletes cholesterol from the P. vivax-infected reticulocyte cell membrane, rendering it granulysin-susceptible. This unexpected T cell defense might be mobilized to improve P. vivax vaccine efficacy.


γδ T cells suppress Plasmodium falciparum blood-stage infection by direct killing and phagocytosis.

  • Caroline Junqueira‎ et al.
  • Nature immunology‎
  • 2021‎

Activated Vγ9Vδ2 (γδ2) T lymphocytes that sense parasite-produced phosphoantigens are expanded in Plasmodium falciparum-infected patients. Although previous studies suggested that γδ2 T cells help control erythrocytic malaria, whether γδ2 T cells recognize infected red blood cells (iRBCs) was uncertain. Here we show that iRBCs stained for the phosphoantigen sensor butyrophilin 3A1 (BTN3A1). γδ2 T cells formed immune synapses and lysed iRBCs in a contact, phosphoantigen, BTN3A1 and degranulation-dependent manner, killing intracellular parasites. Granulysin released into the synapse lysed iRBCs and delivered death-inducing granzymes to the parasite. All intra-erythrocytic parasites were susceptible, but schizonts were most sensitive. A second protective γδ2 T cell mechanism was identified. In the presence of patient serum, γδ2 T cells phagocytosed and degraded opsonized iRBCs in a CD16-dependent manner, decreasing parasite multiplication. Thus, γδ2 T cells have two ways to control blood-stage malaria-γδ T cell antigen receptor (TCR)-mediated degranulation and phagocytosis of antibody-coated iRBCs.


Contributions of IFN-γ and granulysin to the clearance of Plasmodium yoelii blood stage.

  • Natália Satchiko Hojo-Souza‎ et al.
  • PLoS pathogens‎
  • 2020‎

P. vivax-infected Retics (iRetics) express human leukocyte antigen class I (HLA-I), are recognized by CD8+ T cells and killed by granulysin (GNLY) and granzymes. However, how Plasmodium infection induces MHC-I expression on Retics is unknown. In addition, whether GNLY helps control Plasmodium infection in vivo has not been studied. Here, we examine these questions using rodent infection with the P. yoelii 17XNL strain, which has tropism for Retics. Infection with P. yoelii caused extramedullary erythropoiesis, reticulocytosis and expansion of CD8+CD44+CD62L- IFN-γ-producing T cells that form immune synapses with iRetics. We now provide evidence that MHC-I expression by iRetic is dependent on IFN-γ-induced transcription of IRF-1, MHC-I and β2-microglobulin (β2-m) in erythroblasts. Consistently, CTLs from infected wild type (WT) mice formed immune synapses with iRetics in an IFN-γ- and MHC-I-dependent manner. When challenged with P. yoelii 17XNL, WT mice cleared parasitemia and survived, while IFN-γ KO mice remained parasitemic and all died. β2-m KO mice that do not express MHC-I and have virtually no CD8+ T cells had prolonged parasitemia, and 80% survived. Because mice do not express GNLY, GNLY-transgenic mice can be used to assess the in vivo importance of GNLY. Parasite clearance was accelerated in GNLY-transgenic mice and depletion of CD8+ T cells ablated the GNLY-mediated resistance to P. yoelii. Altogether, our results indicate that in addition to previously described mechanisms, IFN-γ promotes host resistance to the Retic-tropic P. yoelii 17XNL strain by promoting MHC-I expression on iRetics that become targets for CD8+ cytotoxic T lymphocytes and GNLY.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: