Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Real-time gene expression analysis in carp (Cyprinus carpio L.) skin: inflammatory responses to injury mimicking infection with ectoparasites.

  • Santiago F Gonzalez‎ et al.
  • Developmental and comparative immunology‎
  • 2007‎

We studied a predictive model of gene expression induced by mechanical injury of fish skin, to resolve the confounding effects on the immune system induced by injury and skin parasite-specific molecules. We applied real time quantitative PCR (RQ-PCR) to measure the expression of the pro-inflammatory cytokines CXCa, CXCb, interleukin (IL)1-beta, tumor necrosis factor alpha (TNFalpha), and the receptors IL1R1, CXCR1 and CXCR2 in skin of Cyprinus carpio after mechanical injury. We also studied the expression of the anti-inflammatory cytokine IL-10. Most obvious, specific up-regulation of the chemokine CXCa, the chemokine receptor CXCR1 and the pro-inflammatory cytokine IL-beta was detected at 2-3h after injury. In order to correlate gene expression patterns after injury with cell migration, we studied chemotaxis of head kidney leukocytes towards lysates of epithelioma papulosum cyprini (EPC) cells. Neutrophilic granulocytes were shown to migrate towards epithelial lysates. Using immunohistochemistry we observed that the early inflammatory response after injury involved an influx of cells, most probably neutrophilic granulocytes, into the injured area. This suggests that the increased expression of pro-inflammatory genes is related to a rapid influx of neutrophilic granulocytes.


Pro-inflammatory functions of carp CXCL8-like and CXCb chemokines.

  • Lieke M van der Aa‎ et al.
  • Developmental and comparative immunology‎
  • 2012‎

Numerous CXC chemokines have been identified in fish, however, their role in inflammation is not well established. Here, CXC chemokines of the CXCL8-like (CXCa_L1 and CXCL8_L2) and CXCL9/10/11-like (CXCb) subset were investigated in carp. Recombinant CXCa_L1, CXCL8_L2 and CXCb all stimulated chemotaxis of macrophages and granulocytes in vitro. CXCb also attracted lymphocytes. Distinct effects on phagocyte activation were observed: the CXCL8-like chemokines increase respiratory burst activity, but not nitrite production. The three chemokines differentially induced a moderate increase in IL-1β, CXCa_L1 and CXCL8_L2 gene expression. Intracellular calcium mobilization in granulocytes upon CXCa_L1 stimulation implies signal transduction through G-protein coupled CXC receptors. Notably, upon intraperitoneal administration, carp CXCL8-like chemokines strongly induced in vivo leukocyte recruitment, including neutrophils and monocytes/macrophages, in contrast to CXCb, for which the number of recruited leukocytes was low. The results indicate functional homology for carp CXCL8-like and CXCb chemokines with mammalian CXCL8 and CXCL9-11, respectively.


Diversification of IFNγ-inducible CXCb chemokines in cyprinid fish.

  • Lieke M van der Aa‎ et al.
  • Developmental and comparative immunology‎
  • 2012‎

We earlier identified two CXCL8-like lineages in cyprinid fish, which are functional homologues of the mammalian CXCL8, but with diverged functions. We here investigated whether the carp IFN-γ-inducible CXCb gene, related to the mammalian CXCL9, -10 and -11 chemokines, was subject to a similar diversification. On the zebrafish genome, a cluster of seven CXCb genes was found on chromosome five. Analysis of the promoter of the zebrafish CXCb genes suggests a partially shared, but differential induction. A second CXCb gene, CXCb2, was identified in common carp by homology cloning. CXCb2 is constitutively expressed in immune-related tissues, predominantly in head kidney lymphocytes/monocytes. Interestingly, an induction of CXCb2 gene expression with recombinant carp IFN-γ2 and LPS was observed in macrophages and granulocytes. Finally, difference in sensitivity to LPS, and kinetics of CXCb1 and CXCb2 gene expression during zymosan-induced peritonitis, was observed. These results indicate a functional diversification for cyprinid CXCb chemokines, with functional homology to mammalian CXCL9-11.


CXC chemokines and leukocyte chemotaxis in common carp (Cyprinus carpio L.).

  • Mark O Huising‎ et al.
  • Developmental and comparative immunology‎
  • 2003‎

CXC chemokines, structurally recognizable by the position of four conserved cysteine residues, are prominent mediators of chemotaxis. Here we report a novel carp CXC chemokine obtained through homology cloning and compare it with fish orthologues genes and with a second, recently elucidated, carp CXC chemokine. Phylogenetic analyses clearly show that neither CXC chemokine resembles any of the mammalian CXC chemokines in particular. However, basal expression is most prominent in immune organs like anterior kidney and spleen, suggesting involvement in the immune response. Furthermore we show that anterior kidney phagocyte-enriched leukocyte suspensions express both chemokines and that this expression is upregulated by brief (4 h) stimulation with PMA, but not lipopolysaccharide. Neutrophilic granulocyte-enriched leukocytes display chemotaxis to human recombinant CXCL8 (hrCXCL8; interleukin-8), confirming CXC chemokine mediated chemotaxis of neutrophilic granulocytes in teleost fish. Factors secreted from carp phagocytes are also capable of inducing chemotaxis and secretion of these factors into culture supernatants is upregulated by PMA. Finally we demonstrate involvement of both CXC chemokines as well as CXCR1 and CXCR2 in acute Argulus japonicus infection. Collectively the data presented implicate the involvement of CXC chemokines in chemotaxis of fish neutrophils in a fashion that shares characteristics with the mammalian situation. However, the CXC chemokines involved differ enough from those involved in neutrophil chemotaxis in mammals to warrant their own nomenclature.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: