Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Brucella abortus Infection Elicited Hepatic Stellate Cell-Mediated Fibrosis Through Inflammasome-Dependent IL-1β Production.

  • Paula Constanza Arriola Benitez‎ et al.
  • Frontiers in immunology‎
  • 2019‎

In human brucellosis, the liver is frequently affected. Brucella abortus triggers a profibrotic response on hepatic stellate cells (HSCs) characterized by inhibition of MMP-9 with concomitant collagen deposition and TGF-β1 secretion through type 4 secretion system (T4SS). Taking into account that it has been reported that the inflammasome is necessary to induce a fibrotic phenotype in HSC, we hypothesized that Brucella infection might create a microenvironment that would promote inflammasome activation with concomitant profibrogenic phenotype in HSCs. B. abortus infection induces IL-1β secretion in HSCs in a T4SS-dependent manner. The expression of caspase-1 (Casp-1), absent in melanoma 2 (AIM2), Nod-like receptor (NLR) containing a pyrin domain 3 (NLRP3), and apoptosis-associated speck-like protein containing a CARD (ASC) was increased in B. abortus-infected HSC. When infection experiments were performed in the presence of glyburide, a compound that inhibits NLRP3 inflammasome, or A151, a specific AIM2 inhibitor, the secretion of IL-1β was significantly inhibited with respect to uninfected controls. The role of inflammasome activation in the induction of a fibrogenic phenotype in HSCs was determined by performing B. abortus infection experiments in the presence of the inhibitors Ac-YVAD-cmk and glyburide. Both inhibitors were able to reverse the effect of B. abortus infection on the fibrotic phenotype in HSCs. Finally, the role of inflammasome in fibrosis was corroborated in vivo by the reduction of fibrotic patches in liver from B. abortus-infected ASC, NLRP, AIM2, and cCasp-1/11 knock-out (KO) mice with respect to infected wild-type mice.


Unveiling the Crucial Role of Type IV Secretion System and Motility of Helicobacter pylori in IL-1β Production via NLRP3 Inflammasome Activation in Neutrophils.

  • Ah-Ra Jang‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Helicobacter pylori is a gram-negative, microaerophilic, and spiral-shaped bacterium and causes gastrointestinal diseases in human. IL-1β is a representative cytokine produced in innate immune cells and is considered to be a key factor in the development of gastrointestinal malignancies. However, the mechanism of IL-1β production by neutrophils during H. pylori infection is still unknown. We designed this study to identify host and bacterial factors involved in regulation of H. pylori-induced IL-1β production in neutrophils. We found that H. pylori-induced IL-1β production is abolished in NLRP3-, ASC-, and caspase-1/11-deficient neutrophils, suggesting essential role for NLRP3 inflammasome in IL-1β response against H. pylori. Host TLR2, but not TLR4 and Nod2, was also required for transcription of NLRP3 and IL-1β as well as secretion of IL-1β. H. pylori lacking cagL, a key component of the type IV secretion system (T4SS), induced less IL-1β production in neutrophils than did its isogenic WT strain, whereas vacA and ureA were dispensable. Moreover, T4SS was involved in caspase-1 activation and IL-1β maturation in H. pylori-infected neutrophils. We also found that FlaA is essential for H. pylori-mediated IL-1β production in neutrophils, but not dendritic cells. TLR5 and NLRC4 were not required for H. pylori-induced IL-1β production in neutrophils. Instead, bacterial motility is essential for the production of IL-1β in response to H. pylori. In conclusion, our study shows that host TLR2 and NLRP3 inflammasome and bacterial T4SS and motility are essential factors for IL-1β production by neutrophils in response to H. pylori.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: