Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Metabolism of the anthelmintic drug fenbendazole in Arabidopsis thaliana and its effect on transcriptome and proteome.

  • Eliška Syslová‎ et al.
  • Chemosphere‎
  • 2019‎

Fenbendazole, a broad spectrum anthelmintic used especially in veterinary medicine, may impact non-target organisms in the environment. Nevertheless, information about the effects of fenbendazole in plants is limited. We investigated the biotransformation of fenbendazole and the effect of fenbendazole and its metabolites on gene expression in the model plant Arabidopsis thaliana. High-sensitive UHPLC coupled with tandem mass spectrometry, RNA-microarray analysis together with qPCR verification and nanoLC-MS proteome analysis were used in this study. Twelve fenbendazole metabolites were identified in the roots and leaves of A. thaliana plants. Hydroxylation, S-oxidation and glycosylation represent the main fenbendazole biotransformation pathways. Exposure of A. thaliana plants to 5 μM fenbendazole for 24 and 72 h significantly affected gene and protein expression. The changes in transcriptome were more pronounced in the leaves than in roots, protein expression was more greatly affected in the roots at a shorter period of exposure (24 h) and in leaf rosettes over a longer period (72 h). Up-regulated (>2-fold change, p < 0.1) proteins are involved in various biological processes (electron transport, energy generating pathways, signal transduction, transport), and in response to stresses (e.g. catalase, superoxide dismutase, cytochromes P450, UDP-glycosyltransferases). Some of the proteins which were up-regulated after fenbendazole-exposure probably participate in fenbendazole biotransformation (e.g. cytochromes P450, UDP-glucosyltransferases). Finally, fenbendazole in plants significantly affects many physiological and metabolic processes and thus the contamination of ecosystems by manure containing this anthelmintic should be restricted.


RNA sequencing indicates that atrazine induces multiple detoxification genes in Daphnia magna and this is a potential source of its mixture interactions with other chemicals.

  • Allison M Schmidt‎ et al.
  • Chemosphere‎
  • 2017‎

Atrazine is an herbicide with several known toxicologically relevant effects, including interactions with other chemicals. Atrazine increases the toxicity of several organophosphates and has been shown to reduce the toxicity of triclosan to D. magna in a concentration dependent manner. Atrazine is a potent activator in vitro of the xenobiotic-sensing nuclear receptor, HR96, related to vertebrate constitutive androstane receptor (CAR) and pregnane X-receptor (PXR). RNA sequencing (RNAseq) was performed to determine if atrazine is inducing phase I-III detoxification enzymes in vivo, and estimate its potential for mixture interactions. RNAseq analysis demonstrates induction of glutathione S-transferases (GSTs), cytochrome P450s (CYPs), glucosyltransferases (UDPGTs), and xenobiotic transporters, of which several are verified by qPCR. Pathway analysis demonstrates changes in drug, glutathione, and sphingolipid metabolism, indicative of HR96 activation. Based on our RNAseq data, we hypothesized as to which environmentally relevant chemicals may show altered toxicity with co-exposure to atrazine. Acute toxicity tests were performed to determine individual LC50 and Hillslope values as were toxicity tests with binary mixtures containing atrazine. The observed mixture toxicity was compared with modeled mixture toxicity using the Computational Approach to the Toxicity Assessment of Mixtures (CATAM) to assess whether atrazine is exerting antagonism, additivity, or synergistic toxicity in accordance with our hypothesis. Atrazine-triclosan mixtures showed decreased toxicity as expected; atrazine-parathion, atrazine-endosulfan, and to a lesser extent atrazine-p-nonylphenol mixtures showed increased toxicity. In summary, exposure to atrazine activates HR96, and induces phase I-III detoxification genes that are likely responsible for mixture interactions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: