Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Expression and function of GDNF family ligands and receptors in the carotid body.

  • Melanie L Leitner‎ et al.
  • Experimental neurology‎
  • 2005‎

The carotid body is a neural crest-derived neuroendocrine organ that detects the oxygen level in blood and regulates ventilation. Unlike many other neural crest derivatives, the trophic factors mediating survival and differentiation of neuroendocrine cells of the carotid body are unknown. Given that many neural crest derivatives rely on the glial cell line-derived neurotrophic factor (GDNF) family of ligands (GFLs) for survival and function, we undertook an analysis of the carotid body as a potential site of GFL action. RET and GDNF family receptor alphas (GFRalpha) 1-3 are expressed in the developing carotid body as detected by RT-PCR and immunocytochemistry. mRNA for GDNF, and artemin (ARTN) were also present. In vitro, treatment with GDNF, neurturin (NRTN), or ARTN, individually or in combination, produced an increase in the number and length of processes of the Type-I glomus cells of the carotid body [embryonic day-17 (E17) rats]. However, GFLs alone or in combination had no effect on glomus cell survival in either postnatal day-1 (P1) or E17 carotid body cultures. These results suggest that one or more GFLs may have a role in carotid body function. In addition, the results of this study suggest that endogenous or exogenous GFLs may enhance target innervation by carotid body transplants.


Persephin signaling through GFRalpha1: the potential for the treatment of Parkinson's disease.

  • Yulia A Sidorova‎ et al.
  • Molecular and cellular neurosciences‎
  • 2010‎

Neurotrophic factors promote survival, proliferation and differentiation of neurons inducing intracellular signaling via specific receptors. The conventional biochemical methods often fail to reveal full repertoire of neurotrophic factor-receptor interactions because of their limited sensitivity. We evaluated several approaches to study signaling of Glial cell line-Derived Neurotrophic Factor (GDNF) family ligands and found that reporter-gene systems possess exceptionally high sensitivity and a heuristic power to identify novel biologically relevant growth factor-receptor interactions. We identified persephin, a GDNF family member, as a novel ligand for GFRalpha1/RET receptor complex. We confirmed this finding by several independent methods, including neurite outgrowth assay from the explants of sympathetic ganglia expressing Gfralpha1 and Ret mRNA but not persephin's conventional receptor GFRalpha4. As the activation of GFRalpha1/RET was shown to rescue dopaminergic neurons, our results suggest the potential of persephin for the treatment of Parkinson's disease.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: