Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Both acyl and des-acyl ghrelin regulate adiposity and glucose metabolism via central nervous system ghrelin receptors.

  • Kristy M Heppner‎ et al.
  • Diabetes‎
  • 2014‎

Growth hormone secretagogue receptors (GHSRs) in the central nervous system (CNS) mediate hyperphagia and adiposity induced by acyl ghrelin (AG). Evidence suggests that des-AG (dAG) has biological activity through GHSR-independent mechanisms. We combined in vitro and in vivo approaches to test possible GHSR-mediated biological activity of dAG. Both AG (100 nmol/L) and dAG (100 nmol/L) significantly increased inositol triphosphate formation in human embryonic kidney-293 cells transfected with human GHSR. As expected, intracerebroventricular infusion of AG in mice increased fat mass (FM), in comparison with the saline-infused controls. Intracerebroventricular dAG also increased FM at the highest dose tested (5 nmol/day). Chronic intracerebroventricular infusion of AG or dAG increased glucose-stimulated insulin secretion (GSIS). Subcutaneously infused AG regulated FM and GSIS in comparison with saline-infused control mice, whereas dAG failed to regulate these parameters even with doses that were efficacious when delivered intracerebroventricularly. Furthermore, intracerebroventricular dAG failed to regulate FM and induce hyperinsulinemia in GHSR-deficient (Ghsr(-/-)) mice. In addition, a hyperinsulinemic-euglycemic clamp suggests that intracerebroventricular dAG impairs glucose clearance without affecting endogenous glucose production. Together, these data demonstrate that dAG is an agonist of GHSR and regulates body adiposity and peripheral glucose metabolism through a CNS GHSR-dependent mechanism.


Hypoglycemic Effect of Combined Ghrelin and Glucagon Receptor Blockade.

  • Bharath K Mani‎ et al.
  • Diabetes‎
  • 2017‎

Glucagon receptor (GcgR) blockade has been proposed as an alternative to insulin monotherapy for treating type 1 diabetes since deletion or inhibition of GcgRs corrects hyperglycemia in models of diabetes. The factors regulating glycemia in a setting devoid of insulin and glucagon function remain unclear but may include the hormone ghrelin. Not only is ghrelin release controlled by glucose but also ghrelin has many actions that can raise or reduce falls in blood glucose level. Here, we tested the hypothesis that ghrelin rises to prevent hypoglycemia in the absence of glucagon function. Both GcgR knockout (Gcgr-/-) mice and db/db mice that were administered GcgR monoclonal antibody displayed lower blood glucose levels accompanied by elevated plasma ghrelin levels. Although treatment with the pancreatic β-cell toxin streptozotocin induced hyperglycemia and raised plasma ghrelin levels in wild-type mice, hyperglycemia was averted in similarly treated Gcgr-/- mice and the plasma ghrelin level was further increased. Notably, administration of a ghrelin receptor antagonist further reduced blood glucose levels into the markedly hypoglycemic range in overnight-fasted, streptozotocin-treated Gcgr-/- mice. A lowered blood glucose level also was observed in overnight-fasted, streptozotocin-treated ghrelin receptor-null mice that were administered GcgR monoclonal antibody. These data suggest that when glucagon activity is blocked in the setting of type 1 diabetes, the plasma ghrelin level rises, preventing hypoglycemia.


B-type natriuretic peptide modulates ghrelin, hunger, and satiety in healthy men.

  • Greisa Vila‎ et al.
  • Diabetes‎
  • 2012‎

Chronic heart failure is accompanied by anorexia and increased release of B-type natriuretic peptide (BNP) from ventricular cardiomyocytes. The pathophysiological mechanisms linking heart failure and appetite regulation remain unknown. In this study, we investigated the impact of intravenous BNP administration on appetite-regulating hormones and subjective ratings of hunger and satiety in 10 healthy volunteers. Participants received in a randomized, placebo-controlled, crossover, single-blinded study (subject) placebo once and 3.0 pmol/kg/min human BNP-32 once administered as a continuous infusion during 4 h. Circulating concentrations of appetite-regulating peptides were measured hourly. Subjective ratings of hunger and satiety were evaluated by visual analog scales. BNP inhibited the fasting-induced increase in total and acylated ghrelin concentrations over time (P = 0.043 and P = 0.038, respectively). In addition, BNP decreased the subjective rating of hunger (P = 0.009) and increased the feeling of satiety (P = 0.012) when compared with placebo. There were no significant changes in circulating peptide YY, glucagon-like peptide 1, oxyntomodulin, pancreatic polypeptide, leptin, and adiponectin concentrations. In summary, our results demonstrate that BNP exerts anorectic effects and reduces ghrelin concentrations in men. These data, taken together with the known cardiovascular properties of ghrelin, support the existence of a heart-gut-brain axis, which could be therapeutically targeted in patients with heart failure and obesity.


Ghrelin attenuates cAMP-PKA signaling to evoke insulinostatic cascade in islet β-cells.

  • Katsuya Dezaki‎ et al.
  • Diabetes‎
  • 2011‎

Ghrelin reportedly restricts insulin release in islet β-cells via the Gα(i2) subtype of G-proteins and thereby regulates glucose homeostasis. This study explored whether ghrelin regulates cAMP signaling and whether this regulation induces insulinostatic cascade in islet β-cells.


Cholinergic regulation of ghrelin and peptide YY release may be impaired in obesity.

  • Christina Maier‎ et al.
  • Diabetes‎
  • 2008‎

Ghrelin and peptide YY (PYY) are both hormones derived from the gastrointestinal tract involved in appetite regulation. The cholinergic part of the vagal nerve is involved in the regulation of glucose and insulin. The aim of this study was to examine the effects of the cholinergic antagonist atropine on ghrelin, PYY, glucose, and insulin under basal conditions and after meal ingestion in lean and obese subjects.


Unacylated ghrelin rescues endothelial progenitor cell function in individuals with type 2 diabetes.

  • Gabriele Togliatto‎ et al.
  • Diabetes‎
  • 2010‎

Acylated ghrelin (AG) is a diabetogenic and orexigenic gastric polypeptide. These properties are not shared by the most abundant circulating form, which is unacylated (UAG). An altered UAG/AG profile together with an impairment of circulating endothelial progenitor cell (EPC) bioavailability were found in diabetes. Based on previous evidence for the beneficial cardiovascular effects of AG and UAG, we investigated their potential to revert diabetes-associated defects.


The central Sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin.

  • Douglas A Velásquez‎ et al.
  • Diabetes‎
  • 2011‎

Ghrelin is a stomach-derived peptide that increases food intake through the activation of hypothalamic AMP-activated protein kinase (AMPK). However, the molecular mechanisms initiated by the activation of the ghrelin receptor, which in turn lead to AMPK activation, remain unclear. Sirtuin 1 (SIRT1) is a deacetylase activated in response to calorie restriction that acts through the tumor suppressor gene p53. We tested the hypothesis that the central SIRT1/p53 pathway might be mediating the orexigenic action of ghrelin.


Diet and gastrointestinal bypass-induced weight loss: the roles of ghrelin and peptide YY.

  • Keval Chandarana‎ et al.
  • Diabetes‎
  • 2011‎

Bariatric surgery causes durable weight loss. Gut hormones are implicated in obesity pathogenesis, dietary failure, and mediating gastrointestinal bypass (GIBP) surgery weight loss. In mice, we determined the effects of diet-induced obesity (DIO), subsequent dieting, and GIBP surgery on ghrelin, peptide YY (PYY), and glucagon-like peptide-1 (GLP-1). To evaluate PYY's role in mediating weight loss post-GIBP, we undertook GIBP surgery in PyyKO mice.


Acute administration of unacylated ghrelin has no effect on Basal or stimulated insulin secretion in healthy humans.

  • Jenny Tong‎ et al.
  • Diabetes‎
  • 2014‎

Unacylated ghrelin (UAG) is the predominant ghrelin isoform in the circulation. Despite its inability to activate the classical ghrelin receptor, preclinical studies suggest that UAG may promote β-cell function. We hypothesized that UAG would oppose the effects of acylated ghrelin (AG) on insulin secretion and glucose tolerance. AG (1 µg/kg/h), UAG (4 µg/kg/h), combined AG+UAG, or saline were infused to 17 healthy subjects (9 men and 8 women) on four occasions in randomized order. Ghrelin was infused for 30 min to achieve steady-state levels and continued through a 3-h intravenous glucose tolerance test. The acute insulin response to glucose (AIRg), insulin sensitivity index (SI), disposition index (DI), and intravenous glucose tolerance (kg) were compared for each subject during the four infusions. AG infusion raised fasting glucose levels but had no effect on fasting plasma insulin. Compared with the saline control, AG and AG+UAG both decreased AIRg, but UAG alone had no effect. SI did not differ among the treatments. AG, but not UAG, reduced DI and kg and increased plasma growth hormone. UAG did not alter growth hormone, cortisol, glucagon, or free fatty acid levels. UAG selectively decreased glucose and fructose consumption compared with the other treatments. In contrast to previous reports, acute administration of UAG does not have independent effects on glucose tolerance or β-cell function and neither augments nor antagonizes the effects of AG.


Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin.

  • Daisuke Kohno‎ et al.
  • Diabetes‎
  • 2003‎

Ghrelin is a newly discovered peptide that is released from the stomach and from neurons in the hypothalamic arcuate nucleus (ARC) and potently stimulates growth hormone release and food intake. Neuropeptide-Y (NPY) neurons in the ARC play an important role in the stimulation of food intake. The present study aimed to determine whether ghrelin directly activates NPY neurons and, if so, to explore its signaling mechanisms. Whether the neurons that respond to ghrelin could be regulated by orexin and leptin was also examined. We isolated single neurons from the ARC of rats and measured the cytosolic Ca(2+) concentration ([Ca(2+)](i)) with fura-2 fluorescence imaging. Ghrelin (10(-12) to 10(-8) mol/l) concentration-dependently increased [Ca(2+)](i), which occurred in 35% of the ARC neurons. Approximately 80% of these ghrelin-responsive neurons were proved to be NPY-containing by immunocytochemical staining, and 58% of them were glucose-sensitive neurons as judged by their responses to lowering glucose concentrations. The [Ca(2+)](i) responses to ghrelin were markedly attenuated by inhibitors of protein kinase A (PKA) but not protein kinase C and by a blocker of N-type but not L-type Ca(2+) channels. Orexin increased [Ca(2+)](i) and leptin attenuated ghrelin-induced [Ca(2+)](i) increases in the majority (80%) of ghrelin-responsive NPY neurons. These results demonstrate that ghrelin directly interacts with NPY neurons in the ARC to induce Ca(2+) signaling via PKA and N-type Ca(2+) channel-dependent mechanisms. The integration of stimulatory effects of ghrelin and orexin and inhibitory effect of leptin may play an important role in the regulation of the activity of NPY neurons and thereby feeding.


Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington's disease.

  • Bronwen Martin‎ et al.
  • Diabetes‎
  • 2009‎

The aim of this study was to find an effective treatment for the genetic form of diabetes that is present in some Huntington's disease patients and in Huntington's disease mouse models. Huntington's disease is a neurodegenerative disorder caused by a polyglutamine expansion within the huntingtin protein. Huntington's disease patients exhibit neuronal dysfunction/degeneration, chorea, and progressive weight loss. Additionally, they suffer from abnormalities in energy metabolism affecting both the brain and periphery. Similarly to Huntington's disease patients, mice expressing the mutated human huntingtin protein also exhibit neurodegenerative changes, motor dysfunction, perturbed energy metabolism, and elevated blood glucose levels.


Nesfatin-1 action in the brain increases insulin sensitivity through Akt/AMPK/TORC2 pathway in diet-induced insulin resistance.

  • Mengliu Yang‎ et al.
  • Diabetes‎
  • 2012‎

Nesfatin-1, derived from nucleobindin 2, was recently identified as an anorexigenic signal peptide. However, its neural role in glucose homeostasis and insulin sensitivity is unknown. To evaluate the metabolic impact and underlying mechanisms of central nesfatin-1 signaling, we infused nesfatin-1 in the third cerebral ventricle of high-fat diet (HFD)-fed rats. The effects of central nesfatin-1 on glucose metabolism and changes in transcription factors and signaling pathways were assessed during euglycemic-hyperinsulinemic clamping. The infusion of nesfatin-1 into the third cerebral ventricle markedly inhibited hepatic glucose production (HGP), promoted muscle glucose uptake, and was accompanied by decreases in hepatic mRNA and protein expression and enzymatic activity of PEPCK in both standard diet- and HFD-fed rats. In addition, central nesfatin-1 increased insulin receptor (InsR)/insulin receptor substrate-1 (IRS-1)/AMP-dependent protein kinase (AMPK)/Akt kinase (Akt)/target of rapamycin complex (TORC) 2 phosphorylation and resulted in an increase in Fos immunoreactivity in the hypothalamic nuclei that mediate glucose homeostasis. Taken together, these results reveal what we believe to be a novel site of action of nesfatin-1 on HGP and the PEPCK/InsR/IRS-1/AMPK/Akt/TORC2 pathway and suggest that hypothalamic nesfatin-1 action through a neural-mediated pathway can contribute to increased peripheral and hepatic insulin sensitivity by decreasing gluconeogenesis and promoting peripheral glucose uptake in vivo.


Preserved energy balance in mice lacking FoxO1 in neurons of Nkx2.1 lineage reveals functional heterogeneity of FoxO1 signaling within the hypothalamus.

  • Garrett Heinrich‎ et al.
  • Diabetes‎
  • 2014‎

Transcription factor forkhead box O1 (FoxO1) regulates energy expenditure (EE), food intake, and hepatic glucose production. These activities have been mapped to specific hypothalamic neuronal populations using cell type-specific knockout experiments in mice. To parse out the integrated output of FoxO1-dependent transcription from different neuronal populations and multiple hypothalamic regions, we used transgenic mice expressing Cre recombinase from the Nkx2.1 promoter to ablate loxP-flanked Foxo1 alleles from a majority of hypothalamic neurons (Foxo1KO(Nkx2.1) mice). This strategy resulted in the expected inhibition of FoxO1 expression, but only produced a transient reduction of body weight as well as a decreased body length. The transient decrease of body weight in male mice was accompanied by decreased fat mass. Male Foxo1KO(Nkx2.1) mice show food intake similar to that in wild-type controls, and, although female knockout mice eat less, they do so in proportion to a reduced body size. EE is unaffected in Foxo1KO(Nkx2.1) mice, although small increases in body temperature are present. Unlike other neuron-specific Foxo1 knockout mice, Foxo1KO(Nkx2.1) mice are not protected from diet-induced obesity. These studies indicate that, unlike the metabolic effects of highly restricted neuronal subsets (proopiomelanocortin, neuropeptide Y/agouti-related peptide, and steroidogenic factor 1), those of neurons derived from the Nkx2.1 lineage either occur in a FoxO1-independent fashion or are compensated for through developmental plasticity.


Altered Brain Response to Drinking Glucose and Fructose in Obese Adolescents.

  • Ania M Jastreboff‎ et al.
  • Diabetes‎
  • 2016‎

Increased sugar-sweetened beverage consumption has been linked to higher rates of obesity. Using functional MRI, we assessed brain perfusion responses to drinking two commonly consumed monosaccharides, glucose and fructose, in obese and lean adolescents. Marked differences were observed. In response to drinking glucose, obese adolescents exhibited decreased brain perfusion in brain regions involved in executive function (prefrontal cortex [PFC]) and increased perfusion in homeostatic appetite regions of the brain (hypothalamus). Conversely, in response to drinking glucose, lean adolescents demonstrated increased PFC brain perfusion and no change in perfusion in the hypothalamus. In addition, obese adolescents demonstrated attenuated suppression of serum acyl-ghrelin and increased circulating insulin level after glucose ingestion; furthermore, the change in acyl-ghrelin and insulin levels after both glucose and fructose ingestion was associated with increased hypothalamic, thalamic, and hippocampal blood flow in obese relative to lean adolescents. Additionally, in all subjects there was greater perfusion in the ventral striatum with fructose relative to glucose ingestion. Finally, reduced connectivity between executive, homeostatic, and hedonic brain regions was observed in obese adolescents. These data demonstrate that obese adolescents have impaired prefrontal executive control responses to drinking glucose and fructose, while their homeostatic and hedonic responses appear to be heightened. Thus, obesity-related brain adaptations to glucose and fructose consumption in obese adolescents may contribute to excessive consumption of glucose and fructose, thereby promoting further weight gain.


The role of liver fructose-1,6-bisphosphatase in regulating appetite and adiposity.

  • Sherley Visinoni‎ et al.
  • Diabetes‎
  • 2012‎

Liver fructose-1,6-bisphosphatase (FBPase) is a regulatory enzyme in gluconeogenesis that is elevated by obesity and dietary fat intake. Whether FBPase functions only to regulate glucose or has other metabolic consequences is not clear; therefore, the aim of this study was to determine the importance of liver FBPase in body weight regulation. To this end we performed comprehensive physiologic and biochemical assessments of energy balance in liver-specific transgenic FBPase mice and negative control littermates of both sexes. In addition, hepatic branch vagotomies and pharmacologic inhibition studies were performed to confirm the role of FBPase. Compared with negative littermates, liver-specific FBPase transgenic mice had 50% less adiposity and ate 15% less food but did not have altered energy expenditure. The reduced food consumption was associated with increased circulating leptin and cholecystokinin, elevated fatty acid oxidation, and 3-β-hydroxybutyrate ketone levels, and reduced appetite-stimulating neuropeptides, neuropeptide Y and Agouti-related peptide. Hepatic branch vagotomy and direct pharmacologic inhibition of FBPase in transgenic mice both returned food intake and body weight to the negative littermates. This is the first study to identify liver FBPase as a previously unknown regulator of appetite and adiposity and describes a novel process by which the liver participates in body weight regulation.


Is Bariatric Surgery Brain Surgery?

  • Leticia E Sewaybricker‎ et al.
  • Diabetes‎
  • 2021‎

No abstract available


Highly Proliferative α-Cell-Related Islet Endocrine Cells in Human Pancreata.

  • Carol J Lam‎ et al.
  • Diabetes‎
  • 2018‎

The proliferative response of non-β islet endocrine cells in response to type 1 diabetes (T1D) remains undefined. We quantified islet endocrine cell proliferation in a large collection of nondiabetic control and T1D human pancreata across a wide range of ages. Surprisingly, islet endocrine cells with abundant proliferation were present in many adolescent and young-adult T1D pancreata. But the proliferative islet endocrine cells were also present in similar abundance within control samples. We queried the proliferating islet cells with antisera against various islet hormones. Although pancreatic polypeptide, somatostatin, and ghrelin cells did not exhibit frequent proliferation, glucagon-expressing α-cells were highly proliferative in many adolescent and young-adult samples. Notably, α-cells only comprised a fraction (∼1/3) of the proliferative islet cells within those samples; most proliferative cells did not express islet hormones. The proliferative hormone-negative cells uniformly contained immunoreactivity for ARX (indicating α-cell fate) and cytoplasmic Sox9 (Sox9Cyt). These hormone-negative cells represented the majority of islet endocrine Ki67+ nuclei and were conserved from infancy through young adulthood. Our studies reveal a novel population of highly proliferative ARX+ Sox9Cyt hormone-negative cells and suggest the possibility of previously unrecognized islet development and/or lineage plasticity within adolescent and adult human pancreata.


Intracerebroventricular administration of C-type natriuretic peptide suppresses food intake via activation of the melanocortin system in mice.

  • Nobuko Yamada-Goto‎ et al.
  • Diabetes‎
  • 2013‎

C-type natriuretic peptide (CNP) and its receptor are abundantly distributed in the brain, especially in the arcuate nucleus (ARC) of the hypothalamus associated with regulating energy homeostasis. To elucidate the possible involvement of CNP in energy regulation, we examined the effects of intracerebroventricular administration of CNP on food intake in mice. The intracerebroventricular administration of CNP-22 and CNP-53 significantly suppressed food intake on 4-h refeeding after 48-h fasting. Next, intracerebroventricular administration of CNP-22 and CNP-53 significantly decreased nocturnal food intake. The increment of food intake induced by neuropeptide Y and ghrelin was markedly suppressed by intracerebroventricular administration of CNP-22 and CNP-53. When SHU9119, an antagonist for melanocortin-3 and melanocortin-4 receptors, was coadministered with CNP-53, the suppressive effect of CNP-53 on refeeding after 48-h fasting was significantly attenuated by SHU9119. Immunohistochemical analysis revealed that intracerebroventricular administration of CNP-53 markedly increased the number of c-Fos-positive cells in the ARC, paraventricular nucleus, dorsomedial hypothalamus, ventromedial hypothalamic nucleus, and lateral hypothalamus. In particular, c-Fos-positive cells in the ARC after intracerebroventricular administration of CNP-53 were coexpressed with α-melanocyte-stimulating hormone immunoreactivity. These results indicated that intracerebroventricular administration of CNP induces an anorexigenic action, in part, via activation of the melanocortin system.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: