Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Comprehension of Co-Speech Gestures in Aphasic Patients: An Eye Movement Study.

  • Noëmi Eggenberger‎ et al.
  • PloS one‎
  • 2016‎

Co-speech gestures are omnipresent and a crucial element of human interaction by facilitating language comprehension. However, it is unclear whether gestures also support language comprehension in aphasic patients. Using visual exploration behavior analysis, the present study aimed to investigate the influence of congruence between speech and co-speech gestures on comprehension in terms of accuracy in a decision task.


Multimodal Communication in Aphasia: Perception and Production of Co-speech Gestures During Face-to-Face Conversation.

  • Basil C Preisig‎ et al.
  • Frontiers in human neuroscience‎
  • 2018‎

The role of nonverbal communication in patients with post-stroke language impairment (aphasia) is not yet fully understood. This study investigated how aphasic patients perceive and produce co-speech gestures during face-to-face interaction, and whether distinct brain lesions would predict the frequency of spontaneous co-speech gesturing. For this purpose, we recorded samples of conversations in patients with aphasia and healthy participants. Gesture perception was assessed by means of a head-mounted eye-tracking system, and the produced co-speech gestures were coded according to a linguistic classification system. The main results are that meaning-laden gestures (e.g., iconic gestures representing object shapes) are more likely to attract visual attention than meaningless hand movements, and that patients with aphasia are more likely to fixate co-speech gestures overall than healthy participants. This implies that patients with aphasia may benefit from the multimodal information provided by co-speech gestures. On the level of co-speech gesture production, we found that patients with damage to the anterior part of the arcuate fasciculus showed a higher frequency of meaning-laden gestures. This area lies in close vicinity to the premotor cortex and is considered to be important for speech production. This may suggest that the use of meaning-laden gestures depends on the integrity of patients' speech production abilities.


Different visual exploration of tool-related gestures in left hemisphere brain damaged patients is associated with poor gestural imitation.

  • Tim Vanbellingen‎ et al.
  • Neuropsychologia‎
  • 2015‎

According to the direct matching hypothesis, perceived movements automatically activate existing motor components through matching of the perceived gesture and its execution. The aim of the present study was to test the direct matching hypothesis by assessing whether visual exploration behavior correlate with deficits in gestural imitation in left hemisphere damaged (LHD) patients. Eighteen LHD patients and twenty healthy control subjects took part in the study. Gesture imitation performance was measured by the test for upper limb apraxia (TULIA). Visual exploration behavior was measured by an infrared eye-tracking system. Short videos including forty gestures (20 meaningless and 20 communicative gestures) were presented. Cumulative fixation duration was measured in different regions of interest (ROIs), namely the face, the gesturing hand, the body, and the surrounding environment. Compared to healthy subjects, patients fixated significantly less the ROIs comprising the face and the gesturing hand during the exploration of emblematic and tool-related gestures. Moreover, visual exploration of tool-related gestures significantly correlated with tool-related imitation as measured by TULIA in LHD patients. Patients and controls did not differ in the visual exploration of meaningless gestures, and no significant relationships were found between visual exploration behavior and the imitation of emblematic and meaningless gestures in TULIA. The present study thus suggests that altered visual exploration may lead to disturbed imitation of tool related gestures, however not of emblematic and meaningless gestures. Consequently, our findings partially support the direct matching hypothesis.


Perception of co-speech gestures in aphasic patients: a visual exploration study during the observation of dyadic conversations.

  • Basil C Preisig‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2015‎

Co-speech gestures are part of nonverbal communication during conversations. They either support the verbal message or provide the interlocutor with additional information. Furthermore, they prompt as nonverbal cues the cooperative process of turn taking. In the present study, we investigated the influence of co-speech gestures on the perception of dyadic dialogue in aphasic patients. In particular, we analysed the impact of co-speech gestures on gaze direction (towards speaker or listener) and fixation of body parts. We hypothesized that aphasic patients, who are restricted in verbal comprehension, adapt their visual exploration strategies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: