2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Metabolomic analysis of tomato seed germination.

  • Rashid H Kazmi‎ et al.
  • Metabolomics : Official journal of the Metabolomic Society‎
  • 2017‎

Seed germination is inherently related to seed metabolism, which changes throughout its maturation, desiccation and germination processes. The metabolite content of a seed and its ability to germinate are determined by underlying genetic architecture and environmental effects during development.


A Role for Allantoate Amidohydrolase (AtAAH) in the Germination of Arabidopsis thaliana Seeds.

  • Farzaneh Yazdanpanah‎ et al.
  • Plant & cell physiology‎
  • 2022‎

Seed dormancy is a very complex trait controlled by interactions between genetic and environmental factors. Nitrate is inversely correlated with seed dormancy in Arabidopsis. This is explained by the fact that seed dry storage (after-ripening) reduces the need for nitrogen for germination. When nitrate is absorbed by plants, it is first reduced to nitrite and then to ammonium for incorporation into amino acids, nucleic acids and chlorophyll. Previously, we showed that ALLANTOATE AMIDOHYDROLASE (AtAAH) transcripts are up-regulated in imbibed dormant seeds compared with after-ripened seeds. AAH is an enzyme in the uric acid catabolic pathway which catalyzes the hydrolysis of allantoate to yield CO2, NH3 and S-ureidoglycine. This pathway is the final stage of purine catabolism, and functions in plants and some bacteria to provide nitrogen, particularly when other nitrogen sources are depleted. Ataah mutant seeds are more dormant and accumulate high levels of allantoate, allantoin and urea, whereas energy-related metabolites and several amino acids are lower upon seed imbibition in comparison with Columbia-0. AtAAH expression could be detected during the early stages of seed development, with a transient increase around 8 d after pollination. AtAAH expression is the highest in mature pollen. The application of exogenous potassium nitrate can partly complement the higher dormancy phenotype of the Ataah mutant seeds, whereas other nitrogen sources cannot. Our results indicate that potassium nitrate does not specifically overcome the alleviated dormancy levels in Ataah mutant seeds, but promotes germination in general. Possible pathways by which AtAAH affects seed germination are discussed.


Network Analysis Prioritizes DEWAX and ICE1 as the Candidate Genes for Major eQTL Hotspots in Seed Germination of Arabidopsis thaliana.

  • Margi Hartanto‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2020‎

Seed germination is characterized by a constant change of gene expression across different time points. These changes are related to specific processes, which eventually determine the onset of seed germination. To get a better understanding on the regulation of gene expression during seed germination, we performed a quantitative trait locus mapping of gene expression (eQTL) at four important seed germination stages (primary dormant, after-ripened, six-hour after imbibition, and radicle protrusion stage) using Arabidopsis thaliana Bay x Sha recombinant inbred lines (RILs). The mapping displayed the distinctness of the eQTL landscape for each stage. We found several eQTL hotspots across stages associated with the regulation of expression of a large number of genes. Interestingly, an eQTL hotspot on chromosome five collocates with hotspots for phenotypic and metabolic QTL in the same population. Finally, we constructed a gene co-expression network to prioritize the regulatory genes for two major eQTL hotspots. The network analysis prioritizes transcription factors DEWAX and ICE1 as the most likely regulatory genes for the hotspot. Together, we have revealed that the genetic regulation of gene expression is dynamic along the course of seed germination.


Detection of QTLs for genotype × environment interactions in tomato seeds and seedlings.

  • Nafiseh Geshnizjani‎ et al.
  • Plant, cell & environment‎
  • 2020‎

Seed quality and seedling establishment are the most important factors affecting successful crop development. They depend on the genetic background and are acquired during seed maturation and therefor, affected by the maternal environment under which the seeds develop. There is little knowledge about the genetic and environmental factors that affect seed quality and seedling establishment. The aim of this study is to identify the loci and possible molecular mechanisms involved in acquisition of seed quality and how these are controlled by adverse maternal conditions. For this, we used a tomato recombinant inbred line (RIL) population consisting of 100 lines which were grown under two different nutritional environmental conditions, high phosphate and low nitrate. Most of the seed germination traits such as maximum germination percentage (Gmax ), germination rate (t50 ) and uniformity (U8416 ) showed ample variation between genotypes and under different germination conditions. This phenotypic variation leads to identification of quantitative trait loci (QTLs) which were dependent on genetic factors, but also on the interaction with the maternal environment (QTL × E). Further studies of these QTLs may ultimately help to predict the effect of different maternal environmental conditions on seed quality and seedling establishment which will be very useful to improve the production of high-performance seeds.


Differentially expressed genes during the imbibition of dormant and after-ripened seeds - a reverse genetics approach.

  • Farzaneh Yazdanpanah‎ et al.
  • BMC plant biology‎
  • 2017‎

Seed dormancy, defined as the incapability of a viable seed to germinate under favourable conditions, is an important trait in nature and agriculture. Despite extensive research on dormancy and germination, many questions about the molecular mechanisms controlling these traits remain unanswered, likely due to its genetic complexity and the large environmental effects which are characteristic of these quantitative traits. To boost research towards revealing mechanisms in the control of seed dormancy and germination we depend on the identification of genes controlling those traits.


Characterization of and genetic variation for tomato seed thermo-inhibition and thermo-dormancy.

  • Nafiseh Geshnizjani‎ et al.
  • BMC plant biology‎
  • 2018‎

Exposing imbibed seeds to high temperatures may lead to either thermo-inhibition of germination or thermo-dormancy responses. In thermo-inhibition, seed germination is inhibited but quickly resumed when temperatures are lowered. Upon prolonged exposure to elevated temperatures, thermo-dormancy may be induced and seeds are not able to germinate even at optimal temperatures. In order to explore underlying physiological and molecular aspects of thermo-induced secondary dormancy, we have investigated the physiological responses of tomato seeds to elevated temperatures and the molecular mechanisms that could explain the performance of tomato seeds at elevated temperature.


Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in Arabidopsis thaliana.

  • Anderson Tadeu Silva‎ et al.
  • Plant molecular biology‎
  • 2017‎

Metabolic and transcriptomic correlation analysis identified two distinctive profiles involved in the metabolic preparation for seed germination and seedling establishment, respectively. Transcripts were identified that may control metabolic fluxes. The transition from a quiescent metabolic state (dry seed) to the active state of a vigorous seedling is crucial in the plant's life cycle. We analysed this complex physiological trait by measuring the changes in primary metabolism that occur during the transition in order to determine which metabolic networks are operational. The transition involves several developmental stages from seed germination to seedling establishment, i.e. between imbibition of the mature dry seed and opening of the cotyledons, the final stage of seedling establishment. We hypothesized that the advancement of growth is associated with certain signature metabolite profiles. Metabolite-metabolite correlation analysis underlined two specific profiles which appear to be involved in the metabolic preparation for seed germination and efficient seedling establishment, respectively. Metabolite profiles were also compared to transcript profiles and although transcriptional changes did not always equate to a proportional metabolic response, in depth correlation analysis identified several transcripts that may directly influence the flux through metabolic pathways during the seed-to-seedling transition. This correlation analysis also pinpointed metabolic pathways which are significant for the seed-to-seedling transition, and metabolite contents that appeared to be controlled directly by transcript abundance. This global view of the transcriptional and metabolic changes during the seed-to-seedling transition in Arabidopsis opens up new perspectives for understanding the complex regulatory mechanism underlying this transition.


Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach.

  • Paulo Roberto Ribeiro‎ et al.
  • BMC plant biology‎
  • 2014‎

Compared with major crops, growth and development of Ricinus communis is still poorly understood. A better understanding of the biochemical and physiological aspects of germination and seedling growth is crucial for the breeding of high yielding varieties adapted to various growing environments. In this context, we analysed the effect of temperature on growth of young R. communis seedlings and we measured primary and secondary metabolites in roots and cotyledons. Three genotypes, recommended to small family farms as cash crop, were used in this study.


Time-series analysis of the transcriptome of the re-establishment of desiccation tolerance by ABA in germinated Arabidopsis thaliana seeds.

  • Maria Cecília D Costa‎ et al.
  • Genomics data‎
  • 2015‎

Expression analyses of time series have become a very popular method for studying the dynamics of a wide range of biological processes. Here, we present expression analysis of a time series with the help of microarrays used to study the re-establishment of desiccation tolerance (DT) in germinated Arabidopsis thaliana seeds. Mature seeds of A. thaliana are desiccation tolerant (survive the loss of most of their water content), but they become desiccation sensitive while progressing to germination. Yet, there is a small developmental window during which DT can be re-established by treatment with the plant hormone abscisic acid (ABA). We studied germinated A. thaliana seeds at the stage of radicle protrusion during ABA incubation for 0 h, 2 h, 12 h, 24 h and 72 h. We describe in detail the methodology applied for generating and analyzing this expression data of time series. The microarray raw data (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62876) may be valuable for further studies on this experimental system, such as the construction of a gene co-expression network [1].


The re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds and its associated transcriptome.

  • Julio Maia‎ et al.
  • PloS one‎
  • 2011‎

The combination of robust physiological models with "omics" studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance (DT) in Arabidopsis thaliana seeds. We show that the incubation of desiccation sensitive (DS) germinated Arabidopsis seeds in a polyethylene glycol (PEG) solution re-induces the mechanisms necessary for expression of DT. Based on a SNP-tile array gene expression profile, our data indicates that the re-establishment of DT, in this system, is related to a programmed reversion from a metabolic active to a quiescent state similar to prior to germination. Our findings show that transcripts of germinated seeds after the PEG-treatment are dominated by those encoding LEA, seed storage and dormancy related proteins. On the other hand, a massive repression of genes belonging to many other classes such as photosynthesis, cell wall modification and energy metabolism occurs in parallel. Furthermore, comparison with a similar system for Medicago truncatula reveals a significant overlap between the two transcriptomes. Such overlap may highlight core mechanisms and key regulators of the trait DT. Taking into account the availability of the many genetic and molecular resources for Arabidopsis, the described system may prove useful for unraveling DT in higher plants.


Plasticity of maternal environment-dependent expression-QTLs of tomato seeds.

  • Mark G Sterken‎ et al.
  • TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik‎
  • 2023‎

Seeds are essential for plant reproduction, survival, and dispersal. Germination ability and successful establishment of young seedlings strongly depend on seed quality and on environmental factors such as nutrient availability. In tomato (Solanum lycopersicum) and many other species, seed quality and seedling establishment characteristics are determined by genetic variation, as well as the maternal environment in which the seeds develop and mature. The genetic contribution to variation in seed and seedling quality traits and environmental responsiveness can be estimated at transcriptome level in the dry seed by mapping genomic loci that affect gene expression (expression QTLs) in contrasting maternal environments. In this study, we applied RNA-sequencing to construct a linkage map and measure gene expression of seeds of a tomato recombinant inbred line (RIL) population derived from a cross between S. lycopersicum (cv. Moneymaker) and S. pimpinellifolium (G1.1554). The seeds matured on plants cultivated under different nutritional environments, i.e., on high phosphorus or low nitrogen. The obtained single-nucleotide polymorphisms (SNPs) were subsequently used to construct a genetic map. We show how the genetic landscape of plasticity in gene regulation in dry seeds is affected by the maternal nutrient environment. The combined information on natural genetic variation mediating (variation in) responsiveness to the environment may contribute to knowledge-based breeding programs aiming to develop crop cultivars that are resilient to stressful environments.


Exploring the natural variation for seedling traits and their link with seed dimensions in tomato.

  • Noorullah Khan‎ et al.
  • PloS one‎
  • 2012‎

The success of germination, growth and final yield of every crop depends to a large extent on the quality of the seeds used to grow the crop. Seed quality is defined as the viability and vigor attribute of a seed that enables the emergence and establishment of normal seedlings under a wide range of environments. We attempt to dissect the mechanisms involved in the acquisition of seed quality, through a combined approach of physiology and genetics. To achieve this goal we explored the genetic variation found in a RIL population of Solanum lycopersicum (cv. Moneymaker) x Solanum pimpinellifolium through extensive phenotyping of seed and seedling traits under both normal and nutrient stress conditions and root system architecture (RSA) traits under optimal conditions. We have identified 62 major QTLs on 21 different positions for seed, seedling and RSA traits in this population. We identified QTLs that were common across both conditions, as well as specific to stress conditions. Most of the QTLs identified for seedling traits co-located with seed size and seed weight QTLs and the positive alleles were mostly contributed by the S. lycopersicum parent. Co-location of QTLs for different traits might suggest that the same locus has pleiotropic effects on multiple traits due to a common mechanistic basis. We show that seed weight has a strong effect on seedling vigor and these results are of great importance for the isolation of the corresponding genes and elucidation of the underlying mechanisms.


A gene co-expression network predicts functional genes controlling the re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds.

  • Maria Cecília D Costa‎ et al.
  • Planta‎
  • 2015‎

During re-establishment of desiccation tolerance (DT), early events promote initial protection and growth arrest, while late events promote stress adaptation and contribute to survival in the dry state. Mature seeds of Arabidopsis thaliana are desiccation tolerant, but they lose desiccation tolerance (DT) while progressing to germination. Yet, there is a small developmental window during which DT can be rescued by treatment with abscisic acid (ABA). To gain temporal resolution and identify relevant genes in this process, data from a time series of microarrays were used to build a gene co-expression network. The network has two regions, namely early response (ER) and late response (LR). Genes in the ER region are related to biological processes, such as dormancy, acquisition of DT and drought, amplification of signals, growth arrest and induction of protection mechanisms (such as LEA proteins). Genes in the LR region lead to inhibition of photosynthesis and primary metabolism, promote adaptation to stress conditions and contribute to seed longevity. Phenotyping of 12 hubs in relation to re-establishment of DT with T-DNA insertion lines indicated a significant increase in the ability to re-establish DT compared with the wild-type in the lines cbsx4, at3g53040 and at4g25580, suggesting the operation of redundant and compensatory mechanisms. Moreover, we show that re-establishment of DT by polyethylene glycol and ABA occurs through partially overlapping mechanisms. Our data confirm that co-expression network analysis is a valid approach to examine data from time series of transcriptome analysis, as it provides promising insights into biologically relevant relations that help to generate new information about the roles of certain genes for DT.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: