Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

High-Fat Diet Alters the Retinal Pigment Epithelium and Choroidal Transcriptome in the Absence of Gut Microbiota.

  • Jason Xiao‎ et al.
  • Cells‎
  • 2022‎

Relationships between retinal disease, diet, and the gut microbiome have started to emerge. In particular, high-fat diets (HFDs) are associated with the prevalence and progression of several retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy (DR). These effects are thought to be partly mediated by the gut microbiome, which modulates interactions between diet and host homeostasis. Nevertheless, the effects of HFDs on the retina and adjacent retinal pigment epithelium (RPE) and choroid at the transcriptional level, independent of gut microbiota, are not well-understood. In this study, we performed the high-throughput RNA-sequencing of germ-free (GF) mice to explore the transcriptional changes induced by HFD in the RPE/choroid. After filtering and cleaning the data, 649 differentially expressed genes (DEGs) were identified, with 616 genes transcriptionally upregulated and 33 genes downregulated by HFD compared to a normal diet (ND). Enrichment analysis for gene ontology (GO) using the DEGs was performed to analyze over-represented biological processes in the RPE/choroid of GF-HFD mice relative to GF-ND mice. GO analysis revealed the upregulation of processes related to angiogenesis, immune response, and the inflammatory response. Additionally, molecular functions that were altered involved extracellular matrix (ECM) binding, ECM structural constituents, and heparin binding. This study demonstrates novel data showing that HFDs can alter RPE/choroid tissue transcription in the absence of the gut microbiome.


High-Fat Diet Alters the Retinal Transcriptome in the Absence of Gut Microbiota.

  • David Dao‎ et al.
  • Cells‎
  • 2021‎

The relationship between retinal disease, diet, and the gut microbiome has shown increasing importance over recent years. In particular, high-fat diets (HFDs) are associated with development and progression of several retinal diseases, including age-related macular degeneration (AMD) and diabetic retinopathy. However, the complex, overlapping interactions between diet, gut microbiome, and retinal homeostasis are poorly understood. Using high-throughput RNA-sequencing (RNA-seq) of whole retinas, we compare the retinal transcriptome from germ-free (GF) mice on a regular diet (ND) and HFD to investigate transcriptomic changes without influence of gut microbiome. After correction of raw data, 53 differentially expressed genes (DEGs) were identified, of which 19 were upregulated and 34 were downregulated in GF-HFD mice. Key genes involved in retinal inflammation, angiogenesis, and RPE function were identified. Enrichment analysis revealed that the top 3 biological processes affected were regulation of blood vessel diameter, inflammatory response, and negative regulation of endopeptidase. Molecular functions altered include endopeptidase inhibitor activity, protease binding, and cysteine-type endopeptidase inhibitor activity. Human and mouse pathway analysis revealed that the complement and coagulation cascades are significantly affected by HFD. This study demonstrates novel data that diet can directly modulate the retinal transcriptome independently of the gut microbiome.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: