Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Immune Responses Regulated by Key Periodontal Bacteria in Germ-Free Mice.

  • Xin Shen‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2022‎

The immune dysregulation induced by periodontal bacteria has important roles in the development of periodontitis. However, the role of key periodontal bacteria in local and systemic immunity has not been comprehensively studied. Herein, to explore immunoregulation maps of key periodontal bacteria, a mono-colonized germ-free mice model with P. gingivalis, F. nucleatum, and T. denticola for two weeks was designed in this study. The alveolar bone loss was determined by micro-CT. A total of 14 types of innate and adaptive immune cells of the gingiva, spleen, and colon were detected by multi-color flow cytometry. P. gingivalis induced the strongest innate immune response in gingiva and mononuclear phagocytes (MNPs) changed most significantly, compared to F. nucleatum and T. denticola. Immune dysregulation of the colon was widely induced by F. nucleatum. T. denticola mainly induced immune disorder in spleen. ILC3s, Tregs, CD11B+ dendritic cells s, MNPs, macrophages, and plasmacytoid dendritic cells were the main types in response to key periodontal bacteria. However, the alveolar bone loss was not induced by key periodontal bacteria. In conclusion, the overall immunoregulation of monomicrobial stimuli to decipher the complexities of periodontitis was provided in this study. P. gingivalis, F. nucleatum, and T. denticola have different effects on local and systemic immunity in gingiva, colon, and spleen of germ-free mice.


Ectopic Colonization and Immune Landscapes of Periodontitis Microbiota in Germ-Free Mice With Streptozotocin-Induced Type 1 Diabetes Mellitus.

  • Xin Shen‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

A two-way relationship between diabetes and periodontitis has been discussed recently. Periodontitis microbiota might affect the immune homeostasis of diabetes, but the molecular mechanism of their interactions is still not clear. The aims of this study were to clarify the possible immune regulatory effects of periodontitis microbiota on diabetes and the correlation between immunomodulation and ectopic colonization. A model of germ-free mice with streptozotocin-induced type 1 diabetes mellitus (T1D), which was orally inoculated with mixed saliva samples for 2 weeks, was used in this study. Those mice were randomly divided into two groups, namely, SP (where the T1D mice were orally inoculated with mixed saliva samples from periodontitis patients) and SH (where the T1D mice were orally inoculated with mixed saliva samples from healthy subjects). Ectopic colonization of saliva microbiota was assessed using culture-dependent method and Sanger sequencing, and the composition of gut microbiota was analyzed using 16S rRNA gene sequencing. Changes in 15 types of immune cells and six cytokines either from the small intestine or spleen were detected by multicolor flow cytometry. The correlation between gut microbiota and immune cells was evaluated by redundancy analysis. Although periodontitis microbiota minorly colonized the lungs, spleens, and blood system, they predominantly colonized the gut, which was mainly invaded by Klebsiella. SH and SP differed in beta diversity of the gut bacterial community. Compared to SH, microbial alteration in small intestine occurred with an increase of Lacticaseibacillus, Bacillus, Agathobacter, Bacteroides, and a decrease of Raoultella in SP. More types of immune cells were disordered in the spleen than in the small intestine by periodontitis microbiota, mainly with a dramatical increase in the proportion of macrophages, plasmacytoid dendritic cells (pDCs), monocytes, group 3 innate lymphoid cells, CD4-CD8- T cells and Th17 cells, as well as a decline of αβT cells in SP. Cytokines of IFNγ, IL17, and IL22 produced by CD4 + T cells as well as IL22 produced by ILCs of small intestine rose in numbers, and the intestinal and splenic pDCs were positively regulated by gut bacterial community in SP. In conclusion, periodontitis microbiota invasion leads to ectopic colonization of the extra-oral sites and immune cells infiltration, which might cause local or systemic inflammation. Those cells are considered to act as a "bridge" between T1D and periodontitis.


Live birth of chimeric monkey with high contribution from embryonic stem cells.

  • Jing Cao‎ et al.
  • Cell‎
  • 2023‎

A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.


Bach1 regulates self-renewal and impedes mesendodermal differentiation of human embryonic stem cells.

  • Xiangxiang Wei‎ et al.
  • Science advances‎
  • 2019‎

The transcription factor BTB and CNC homology 1 (Bach1) is expressed in the embryos of mice, but whether Bach1 regulates the self-renewal and early differentiation of human embryonic stem cells (hESCs) is unknown. We report that the deubiquitinase ubiquitin-specific processing protease 7 (Usp7) is a direct target of Bach1, that Bach1 interacts with Nanog, Sox2, and Oct4, and that Bach1 facilitates their deubiquitination and stabilization via the recruitment of Usp7, thereby maintaining stem cell identity and self-renewal. Bach1 also interacts with polycomb repressive complex 2 (PRC2) and represses mesendodermal gene expression by recruiting PRC2 to the genes' promoters. The loss of Bach1 in hESCs promotes differentiation toward the mesendodermal germ layers by reducing the occupancy of EZH2 and H3K27me3 in mesendodermal gene promoters and by activating the Wnt/β-catenin and Nodal/Smad2/3 signaling pathways. Our study shows that Bach1 is a key determinant of pluripotency, self-renewal, and lineage specification in hESCs.


Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo.

  • Binghua Xue‎ et al.
  • PloS one‎
  • 2016‎

Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.


Interspecies Variation of In Vitro Stability and Metabolic Diversity of YZG-331, a Promising Sedative-Hypnotic Compound.

  • Zhihao Liu‎ et al.
  • Frontiers in pharmacology‎
  • 2017‎

YZG-331, a synthetic adenosine derivative, express the sedative and hypnotic effects via binding to the adenosine receptor. The current study was taken to investigate the metabolic pathway of YZG-331 as well as species-specific differences in vitro. YZG-331 was reduced by 14, 11, 6, 46, and 11% within 120 min incubation in human, monkey, dog, rat, and mouse liver microsomes (LMs), respectively. However, YZG-331 was stable in human, monkey, dog, rat, and mouse liver cytoplasm. In addition, YZG-331 was unstable in rat or mouse gut microbiota with more than 50% of prototype drug degraded within 120 min incubation. Interestingly, the systemic exposure of M2 and M3 in rats and mice treated with antibiotics were significantly decreased in the pseudo germ-free group. YZG-331 could be metabolized in rat and human liver under the catalysis of CYP enzymes, and the metabolism showed species variation. In addition, 3 phase I metabolites were identified via hydroxyl (M1), hydrolysis (M2), or hydrolysis/ hydroxyl (M3) pathway. Flavin-containing monooxygenase 1 (FMO1) and FMO3 participated in the conversion of YZG-331 in rat LMs. Nevertheless, YZG-331 expressed stability with recombinant human FMOs, which further confirmed the species variation in the metabolism. Overall, these studies suggested that YZG-331 is not stable in LMs and gut microbiota. CYP450 enzymes and FMOs mediated the metabolism of YZG-331, and the metabolic pathway showed species difference. Special attention must be paid when extrapolating data from other species to humans.


STYXL1 regulates CCT complex assembly and flagellar tubulin folding in sperm formation.

  • Yu Chen‎ et al.
  • Nature communications‎
  • 2024‎

Tubulin-based microtubule is a core component of flagella axoneme and essential for sperm motility and male fertility. Structural components of the axoneme have been well explored. However, how tubulin folding is regulated in sperm flagella formation is still largely unknown. Here, we report a germ cell-specific co-factor of CCT complex, STYXL1. Deletion of Styxl1 results in male infertility and microtubule defects of sperm flagella. Proteomic analysis of Styxl1-/- sperm reveals abnormal downregulation of flagella-related proteins including tubulins. The N-terminal rhodanese-like domain of STYXL1 is important for its interactions with CCT complex subunits, CCT1, CCT6 and CCT7. Styxl1 deletion leads to defects in CCT complex assembly and tubulin polymerization. Collectively, our findings reveal the vital roles of germ cell-specific STYXL1 in CCT-facilitated tubulin folding and sperm flagella development.


miR-1224 contributes to ischemic stroke-mediated natural killer cell dysfunction by targeting Sp1 signaling.

  • Yan Feng‎ et al.
  • Journal of neuroinflammation‎
  • 2021‎

Brain ischemia compromises natural killer (NK) cell-mediated immune defenses by acting on neurogenic and intracellular pathways. Less is known about the posttranscriptional mechanisms that regulate NK cell activation and cytotoxicity after ischemic stroke.


Generation of a heterozygous p53 R249S mutant human embryonic stem cell line by TALEN-mediated genome editing.

  • Zijun Huo‎ et al.
  • Stem cell research‎
  • 2019‎

As one of the most essential genome guardians, p53 and its mutants have been suggested associated with many types of cancers. Many p53 mutants function induce unique phenotypes, including carcinogenesis, metastasis, and drug resistance. The p53(R249S) mutation is the most prevalent and specific mutation associated with liver cancer development. Here, we demonstrate the generation of a heterozygous p53(R249S) mutation in the H9 human embryonic stem cell line using TALEN-mediated genome editing. The generated cell line maintains a normal karyotype, a pluripotent state and the in vivo capacity to develop a teratoma containing all three germ layer tissues.


TUC338 Promotes Diffuse Large B Cell Lymphoma Growth via Regulating EGFR/PI3K/AKT Signaling Pathway.

  • Yan Li‎ et al.
  • Journal of oncology‎
  • 2021‎

TUC338 is emerging as a novel vital long noncoding RNA (lncRNA) in human cancer; however, its role in diffuse large B cell lymphoma (DLBCL) remains unknown. In this study, we found that TUC338 was remarkably upregulated in DLBCL tissues as compared to matched normal tissues. High TUC338 was closely related to advanced Ann Arbor stage, resistance to CHOP-like treatment, and high IPI (International Prognostic Index). Stable knockdown of TUC338 evidently inhibited cell proliferation and chemotherapy resistance to Adriamycin and induced apoptosis. Further, we found that TUC338 was able to directly bind to miR-28-5p and increased EGFR level, resulting in activating carcinogenic PI3K/AKT signaling, thereby facilitating DLBCL uncontrolled growth. Moreover, we also found that depletion of TUC338 led to the inactivation of EGFR/PI3K/AKT pathway in vivo by using the xenograft tumor model. Preclinically, DLBCL patients with high TUC338 had shorter survival time than those with low TUC338, and serum TUC338 level was identified as an excellent indicator for DLBCL diagnosis. In sum, our findings clearly indicate that TUC338 functions as an oncogenic lncRNA in DLBCL through activating EGFR/PI3K/AKT pathway via sponging and inhibiting miR-28-5p, which may be a promising target for DLBCL treatment.


Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5-/- mice.

  • Yan Li‎ et al.
  • Nature communications‎
  • 2019‎

Accumulating evidence points to an important role for the gut microbiome in anti-tumor immunity. Here, we show that altered intestinal microbiota contributes to anti-tumor immunity, limiting tumor expansion. Mice lacking the ubiquitin ligase RNF5 exhibit attenuated activation of the unfolded protein response (UPR) components, which coincides with increased expression of inflammasome components, recruitment and activation of dendritic cells and reduced expression of antimicrobial peptides in intestinal epithelial cells. Reduced UPR expression is also seen in murine and human melanoma tumor specimens that responded to immune checkpoint therapy. Co-housing of Rnf5-/- and WT mice abolishes the anti-tumor immunity and tumor inhibition phenotype, whereas transfer of 11 bacterial strains, including B. rodentium, enriched in Rnf5-/- mice, establishes anti-tumor immunity and restricts melanoma growth in germ-free WT mice. Altered UPR signaling, exemplified in Rnf5-/- mice, coincides with altered gut microbiota composition and anti-tumor immunity to control melanoma growth.


Cancer-testis antigen HCA587/MAGE-C2 interacts with BS69 and promotes its degradation in the ubiquitin-proteasome pathway.

  • Jiaqing Hao‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

HCA587, also known as MAGE-C2, belonging to the MAGE gene family which is characterized by a conserved MAGE Homology Domain, is active in various types of tumors and silent in normal tissues except in male germ-line cells. The biological function of HCA587 is largely unknown. To analyze it, we attempted to identify protein partners of HCA587. We immunopurified HCA587-containing complex from HEK293 cells and identified BS69, a potential tumor suppressor, as an associated protein by mass spectrometry, and the following Immunoprecipitation and GST pull-down assays confirmed HCA587 interaction with BS69. Interestingly, overexpression of HCA587 promoted ubiquitination and the proteasomal degradation of BS69 whereas knockdown of endogenous HCA587 increased the protein level of BS69. Consistent with a functional role for BS69 in negatively regulating LMP1-induced NF-κB activation, overexpression of HCA587 resulted in a significant enhancement of LMP1-induced IL-6 production. These data indicate that HCA587 is a new negative regulator of BS69.


"Out of pollen" hypothesis for origin of new genes in flowering plants: study from Arabidopsis thaliana.

  • Dong-Dong Wu‎ et al.
  • Genome biology and evolution‎
  • 2014‎

New genes, which provide material for evolutionary innovation, have been extensively studied for many years in animals where it is observed that they commonly show an expression bias for the testis. Thus, the testis is a major source for the generation of new genes in animals. The source tissue for new genes in plants is unclear. Here, we find that new genes in plants show a bias in expression to mature pollen, and are also enriched in a gene coexpression module that correlates with mature pollen in Arabidopsis thaliana. Transposable elements are significantly enriched in the new genes, and the high activity of transposable elements in the vegetative nucleus, compared with the germ cells, suggests that new genes are most easily generated in the vegetative nucleus in the mature pollen. We propose an "out of pollen" hypothesis for the origin of new genes in flowering plants.


Prebiotic-Induced Anti-tumor Immunity Attenuates Tumor Growth.

  • Yan Li‎ et al.
  • Cell reports‎
  • 2020‎

Growing evidence supports the importance of gut microbiota in the control of tumor growth and response to therapy. Here, we select prebiotics that can enrich bacterial taxa that promote anti-tumor immunity. Addition of the prebiotics inulin or mucin to the diet of C57BL/6 mice induces anti-tumor immune responses and inhibition of BRAF mutant melanoma growth in a subcutaneously implanted syngeneic mouse model. Mucin fails to inhibit tumor growth in germ-free mice, indicating that the gut microbiota is required for the activation of the anti-tumor immune response. Inulin and mucin drive distinct changes in the microbiota, as inulin, but not mucin, limits tumor growth in syngeneic mouse models of colon cancer and NRAS mutant melanoma and enhances the efficacy of a MEK inhibitor against melanoma while delaying the emergence of drug resistance. We highlight the importance of gut microbiota in anti-tumor immunity and the potential therapeutic role for prebiotics in this process.


A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting.

  • Ximeng Han‎ et al.
  • Cell stem cell‎
  • 2021‎

The use of the dual recombinase-mediated intersectional genetic approach involving Cre-loxP and Dre-rox has significantly enhanced the precision of in vivo lineage tracing, as well as gene manipulation. However, this approach is limited by the small number of Dre recombinase driver constructs available. Here, we developed more than 70 new intersectional drivers to better target diverse cell lineages. To highlight their applicability, we used these new tools to study the in vivo adipogenic fate of perivascular progenitors, which revealed that PDGFRa+ but not PDGFRa-PDGFRb+ perivascular cells are the endogenous progenitors of adult adipocytes. In addition to lineage tracing, we used members of this new suite of drivers to more specifically knock out genes in complex tissues, such as white adipocytes and lymphatic vessels, that heretofore cannot be selectively targeted by conventional Cre drivers alone. In summary, these new transgenic tools expand the intersectional genetic approach while enhancing its precision.


SCAPs Regulate Differentiation of DFSCs During Tooth Root Development in Swine.

  • Xiaoshan Wu‎ et al.
  • International journal of medical sciences‎
  • 2018‎

The tooth root transmits and balances occlusal forces through the periodontium to the alveolar bone. The periodontium, including the gingiva, the periodontal ligament, the cementum and the partial alveolar bone, derives from the dental follicle (DF), except for the gingiva. In the early developmental stages, the DF surrounds the tooth germ as a sphere and functions to promote tooth eruption. However, the morphological dynamics and factors regulating the differentiation of the DF during root elongation remain largely unknown. Miniature pigs are regarded as a useful experimental animal for modeling in craniofacial research because they are similar to humans with respect to dentition and mandible anatomy. In the present study, we used the third deciduous incisor of miniature pig as the model to investigate the factors influencing DF differentiation during root development. We found that the DF was shaped like a crescent and was located between the root apical and the alveolar bone. The expression levels of WNT5a, β-Catenin, and COL-I gradually increased from the center of the DF (beneath the apical foramen) to the lateral coronal corner, where the DF differentiates into the periodontium. To determine the potential regulatory role of the apical papilla on DF cell differentiation, we co-cultured dental follicle stem cells (DFSCs) with stem cells of the apical papilla (SCAPs). The osteogenesis and fibrogenesis abilities of DFSCs were inhibited when being co-cultured with SCAPs, suggesting that the fate of the DF can be regulated by signals from the apical papilla. The apical papilla may sustain the undifferentiated status of DFSCs before root development finishes. These data yield insight into the interaction between the root apex and surrounding DF tissues in root and periodontium development and shed light on the future study of root regeneration in large mammals.


Discovery of potential piRNAs from next generation sequences of the sexually mature porcine testes.

  • Gang Liu‎ et al.
  • PloS one‎
  • 2012‎

Piwi-interacting RNAs (piRNAs), a new class of small RNAs discovered from mammalian testes, are involved in transcriptional silencing of retrotransposons and other genetic elements in germ line cells. In order to identify a full transcriptome set of piRNAs expressed in the sexually mature porcine testes, small RNA fractions were extracted and were subjected to a Solexa deep sequencing. We cloned 6,913,561 clean reads of Sus Scrofa small RNAs (18-30 nt) and performed functional characterization. Sus Scrofa small RNAs showed a bimodal length distribution with two peaks at 21 nt and 29 nt. Then from 938,328 deep-sequenced small RNAs (26-30 nt), 375,195 piRNAs were identified by a k-mer scheme and 326 piRNAs were identified by homology searches. All piRNAs predicted by the k-mer scheme were then mapped to swine genome by Short Oligonucleotide Analysis Package (SOAP), and 81.61% of all uniquely mapping piRNAs (197,673) were located to 1124 defined genomic regions (5.85 Mb). Within these regions, 536 and 501 piRNA clusters generally distributed across only minus or plus genomic strand, 48 piRNA clusters distributed on two strands but in a divergent manner, and 39 piRNA clusters distributed on two strands in an overlapping manner. Furthermore, expression pattern of 7 piRNAs identified by homology searches showed 5 piRNAs displayed a ubiquitous expression pattern, although 2 piRNAs were specifically expressed in the testes. Overall, our results provide new information of porcine piRNAs and their specific expression pattern in porcine testes suggests that piRNAs have a role in regulating spermatogenesis.


Tumor suppressor CEBPA interacts with and inhibits DNMT3A activity.

  • Xiufei Chen‎ et al.
  • Science advances‎
  • 2022‎

DNA methyltransferases (DNMTs) catalyze DNA methylation, and their functions in mammalian embryonic development and diseases including cancer have been extensively studied. However, regulation of DNMTs remains under study. Here, we show that CCAAT/enhancer binding protein α (CEBPA) interacts with the long splice isoform DNMT3A, but not the short isoform DNMT3A2. CEBPA, by interacting with DNMT3A N-terminus, blocks DNMT3A from accessing DNA substrate and thereby inhibits its activity. Recurrent tumor-associated CEBPA mutations, such as preleukemic CEBPAN321D mutation, which is particularly potent in causing AML with high mortality, disrupt DNMT3A association and cause aberrant DNA methylation, notably hypermethylation of PRC2 target genes. Consequently, leukemia cells with the CEBPAN321D mutation are hypersensitive to hypomethylation agents. Our results provide insights into the functional difference between DNMT3A isoforms and the regulation of de novo DNA methylation at specific loci in the genome. Our study also suggests a therapeutic strategy for the treatment of CEBPA-mutated leukemia with DNA-hypomethylating agents.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: