Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Isolating mitotic and meiotic germ cells from male mice by developmental synchronization, staging, and sorting.

  • Katherine A Romer‎ et al.
  • Developmental biology‎
  • 2018‎

Isolating discrete populations of germ cells from the mouse testis is challenging, because the adult testis contains germ cells at every step of spermatogenesis, in addition to somatic cells. We present a novel method for isolating precise, high-purity populations of male germ cells. We first synchronize germ cell development in vivo by manipulating retinoic acid metabolism, and perform histological staging to verify synchronization. We use fluorescence-activated cell sorting to separate the synchronized differentiating germ cells from contaminating somatic cells and undifferentiated spermatogonia. We achieve ~90% purity at each step of development from undifferentiated spermatogonia through late meiotic prophase. Utilizing this "3 S" method (synchronize, stage, and sort), we can separate germ cell types that were previously challenging or impossible to distinguish, with sufficient yield for epigenetic and biochemical studies. 3 S expands the toolkit of germ cell sorting methods, and should facilitate detailed characterization of molecular and biochemical changes that occur during the mitotic and meiotic phases of spermatogenesis.


Dynamic and regulated TAF gene expression during mouse embryonic germ cell development.

  • Megan A Gura‎ et al.
  • PLoS genetics‎
  • 2020‎

Germ cells undergo many developmental transitions before ultimately becoming either eggs or sperm, and during embryonic development these transitions include epigenetic reprogramming, quiescence, and meiosis. To begin understanding the transcriptional regulation underlying these complex processes, we examined the spatial and temporal expression of TAF4b, a variant TFIID subunit required for fertility, during embryonic germ cell development. By analyzing published datasets and using our own experimental system to validate these expression studies, we determined that both Taf4b mRNA and protein are highly germ cell-enriched and that Taf4b mRNA levels dramatically increase from embryonic day 12.5-18.5. Surprisingly, additional mRNAs encoding other TFIID subunits are coordinately upregulated through this time course, including Taf7l and Taf9b. The expression of several of these germ cell-enriched TFIID genes is dependent upon Dazl and/or Stra8, known regulators of germ cell development and meiosis. Together, these data suggest that germ cells employ a highly specialized and dynamic form of TFIID to drive the transcriptional programs that underlie mammalian germ cell development.


Periodic production of retinoic acid by meiotic and somatic cells coordinates four transitions in mouse spermatogenesis.

  • Tsutomu Endo‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2017‎

Mammalian spermatogenesis is an elaborately organized differentiation process, starting with diploid spermatogonia, which include germ-line stem cells, and ending with haploid spermatozoa. The process involves four pivotal transitions occurring in physical proximity: spermatogonial differentiation, meiotic initiation, initiation of spermatid elongation, and release of spermatozoa. We report how the four transitions are coordinated in mice. Two premeiotic transitions, spermatogonial differentiation and meiotic initiation, were known to be coregulated by an extrinsic signal, retinoic acid (RA). Our chemical manipulations of RA levels in mouse testes now reveal that RA also regulates the two postmeiotic transitions: initiation of spermatid elongation and spermatozoa release. We measured RA concentrations and found that they changed periodically, as also reflected in the expression patterns of an RA-responsive gene, STRA8; RA levels were low before the four transitions, increased when the transitions occurred, and remained elevated thereafter. We found that pachytene spermatocytes, which express an RA-synthesizing enzyme, Aldh1a2, contribute directly and significantly to RA production in testes. Indeed, chemical and genetic depletion of pachytene spermatocytes revealed that RA from pachytene spermatocytes was required for the two postmeiotic transitions, but not for the two premeiotic transitions. We conclude that the premeiotic transitions are coordinated by RA from Sertoli (somatic) cells. Once germ cells enter meiosis, pachytene spermatocytes produce RA to coordinate the two postmeiotic transitions. In combination, these elements underpin the spatiotemporal coordination of spermatogenesis and ensure its prodigious output in adult males.


Post-transcriptional repression of mRNA enhances competence to transit from mitosis to meiosis in mouse spermatogenic cells.

  • Maria M Mikedis‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The special cell cycle known as meiosis transforms diploid germ cells into haploid gametes. In mammalian testes, diploid spermatogenic cells become competent to transition from mitosis to meiosis in response to retinoic acid. In mice, previous studies revealed that MEIOC, alongside binding partners YTHDC2 and RBM46, represses mitotic genes and promotes robust meiotic gene expression in spermatogenic cells that have already initiated meiosis. Here, we molecularly dissect MEIOC-dependent regulation in mouse spermatogenic cells and find that MEIOC actually shapes the transcriptome much earlier, even before meiotic initiation. MEIOC, acting with YTHDC2 and RBM46, destabilizes mRNA targets, including transcriptional repressors E2f6 and Mga, in mitotic spermatogonia. MEIOC thereby derepresses E2F6- and MGA-repressed genes, including Meiosin and other meiosis-associated genes. This confers on spermatogenic cells the molecular competence to, in response to retinoic acid, fully activate the STRA8-MEIOSIN transcriptional regulator, which is required for the meiotic G1/S cell cycle transition and meiotic gene expression. We conclude that in mice, mRNA decay mediated by MEIOC-YTHDC2-RBM46 enhances the competence of mitotic spermatogonia to transit from mitosis to meiosis.


UBR2 of the N-end rule pathway is required for chromosome stability via histone ubiquitylation in spermatocytes and somatic cells.

  • Jee Young An‎ et al.
  • PloS one‎
  • 2012‎

The N-end rule pathway is a proteolytic system in which its recognition components (N-recognins) recognize destabilizing N-terminal residues of short-lived proteins as an essential element of specific degrons, called N-degrons. The RING E3 ligases UBR2 and UBR1 are major N-recognins that share size (200 kDa), conserved domains and substrate specificities to N-degrons. Despite the known function of the N-end rule pathway in degradation of cytosolic proteins, the major phenotype of UBR2-deficient male mice is infertility caused by arrest of spermatocytes at meiotic prophase I. UBR2-deficient spermatocytes are impaired in transcriptional silencing of sex chromosome-linked genes and ubiquitylation of histone H2A. In this study we show that the recruitment of UBR2 to meiotic chromosomes spatiotemporally correlates to the induction of chromatin-associated ubiquitylation, which is significantly impaired in UBR2-deficient spermatocytes. UBR2 functions as a scaffold E3 that promotes HR6B/UbcH2-dependent ubiquitylation of H2A and H2B but not H3 and H4, through a mechanism distinct from typical polyubiquitylation. The E3 activity of UBR2 in histone ubiquitylation is allosterically activated by dipeptides bearing destabilizing N-terminal residues. Insufficient monoubiquitylation and polyubiquitylation on UBR2-deficient meiotic chromosomes correlate to defects in double strand break (DSB) repair and other meiotic processes, resulting in pachytene arrest at stage IV and apoptosis. Some of these functions of UBR2 are observed in somatic cells, in which UBR2 is a chromatin-binding protein involved in chromatin-associated ubiquitylation upon DNA damage. UBR2-deficient somatic cells show an array of chromosomal abnormalities, including hyperproliferation, chromosome instability, and hypersensitivity to DNA damage-inducing reagents. UBR2-deficient mice enriched in C57 background die upon birth with defects in lung expansion and neural development. Thus, UBR2, known as the recognition component of a major cellular proteolytic system, is associated with chromatin and controls chromatin dynamics and gene expression in both germ cells and somatic cells.


RSPO1/β-catenin signaling pathway regulates oogonia differentiation and entry into meiosis in the mouse fetal ovary.

  • Anne-Amandine Chassot‎ et al.
  • PloS one‎
  • 2011‎

Differentiation of germ cells into male gonocytes or female oocytes is a central event in sexual reproduction. Proliferation and differentiation of fetal germ cells depend on the sex of the embryo. In male mouse embryos, germ cell proliferation is regulated by the RNA helicase Mouse Vasa homolog gene and factors synthesized by the somatic Sertoli cells promote gonocyte differentiation. In the female, ovarian differentiation requires activation of the WNT/β-catenin signaling pathway in the somatic cells by the secreted protein RSPO1. Using mouse models, we now show that Rspo1 also activates the WNT/β-catenin signaling pathway in germ cells. In XX Rspo1(-/-) gonads, germ cell proliferation, expression of the early meiotic marker Stra8, and entry into meiosis are all impaired. In these gonads, impaired entry into meiosis and germ cell sex reversal occur prior to detectable Sertoli cell differentiation, suggesting that β-catenin signaling acts within the germ cells to promote oogonial differentiation and entry into meiosis. Our results demonstrate that RSPO1/β-catenin signaling is involved in meiosis in fetal germ cells and contributes to the cellular decision of germ cells to differentiate into oocyte or sperm.


The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline.

  • Alexis S Bailey‎ et al.
  • eLife‎
  • 2017‎

The switch from mitosis to meiosis is the key event marking onset of differentiation in the germline stem cell lineage. In Drosophila, the translational repressor Bgcn is required for spermatogonia to stop mitosis and transition to meiotic prophase and the spermatocyte state. Here we show that the mammalian Bgcn homolog YTHDC2 facilitates a clean switch from mitosis to meiosis in mouse germ cells, revealing a conserved role for YTHDC2 in this critical cell fate transition. YTHDC2-deficient male germ cells enter meiosis but have a mixed identity, maintaining expression of Cyclin A2 and failing to properly express many meiotic markers. Instead of continuing through meiotic prophase, the cells attempt an abnormal mitotic-like division and die. YTHDC2 binds multiple transcripts including Ccna2 and other mitotic transcripts, binds specific piRNA precursors, and interacts with RNA granule components, suggesting that proper progression of germ cells through meiosis is licensed by YTHDC2 through post-transcriptional regulation.


The Neonatal and Adult Human Testis Defined at the Single-Cell Level.

  • Abhishek Sohni‎ et al.
  • Cell reports‎
  • 2019‎

Spermatogenesis has been intensely studied in rodents but remains poorly understood in humans. Here, we used single-cell RNA sequencing to analyze human testes. Clustering analysis of neonatal testes reveals several cell subsets, including cell populations with characteristics of primordial germ cells (PGCs) and spermatogonial stem cells (SSCs). In adult testes, we identify four undifferentiated spermatogonia (SPG) clusters, each of which expresses specific marker genes. We identify protein markers for the most primitive SPG state, allowing us to purify this likely SSC-enriched cell subset. We map the timeline of male germ cell development from PGCs through fetal germ cells to differentiating adult SPG stages. We also define somatic cell subsets in both neonatal and adult testes and trace their developmental trajectories. Our data provide a blueprint of the developing human male germline and supporting somatic cells. The PGC-like and SSC markers are candidates to be used for SSC therapy to treat infertility.


H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation.

  • Zhiliang Xu‎ et al.
  • Nucleic acids research‎
  • 2016‎

Meiotic recombination is essential for fertility in most sexually reproducing species, but the molecular mechanisms underlying this process remain poorly understood in mammals. Here, we show that RNF20-mediated H2B ubiquitination is required for meiotic recombination. A germ cell-specific knockout of the H2B ubiquitination E3 ligase RNF20 results in complete male infertility. The Stra8-Rnf20-/- spermatocytes arrest at the pachytene stage because of impaired programmed double-strand break (DSB) repair. Further investigations reveal that the depletion of RNF20 in the germ cells affects chromatin relaxation, thus preventing programmed DSB repair factors from being recruited to proper positions on the chromatin. The gametogenetic defects of the H2B ubiquitination deficient cells could be partially rescued by forced chromatin relaxation. Taken together, our results demonstrate that RNF20/Bre1p-mediated H2B ubiquitination regulates meiotic recombination by promoting chromatin relaxation, and suggest an old drug may provide a new way to treat some oligo- or azoospermia patients with chromatin relaxation disorders.


Meioc maintains an extended meiotic prophase I in mice.

  • Y Q Shirleen Soh‎ et al.
  • PLoS genetics‎
  • 2017‎

The meiosis-specific chromosomal events of homolog pairing, synapsis, and recombination occur over an extended meiotic prophase I that is many times longer than prophase of mitosis. Here we show that, in mice, maintenance of an extended meiotic prophase I requires the gene Meioc, a germ-cell specific factor conserved in most metazoans. In mice, Meioc is expressed in male and female germ cells upon initiation of and throughout meiotic prophase I. Mouse germ cells lacking Meioc initiate meiosis: they undergo pre-meiotic DNA replication, they express proteins involved in synapsis and recombination, and a subset of cells progress as far as the zygotene stage of prophase I. However, cells in early meiotic prophase-as early as the preleptotene stage-proceed to condense their chromosomes and assemble a spindle, as if having progressed to metaphase. Meioc-deficient spermatocytes that have initiated synapsis mis-express CYCLIN A2, which is normally expressed in mitotic spermatogonia, suggesting a failure to properly transition to a meiotic cell cycle program. MEIOC interacts with YTHDC2, and the two proteins pull-down an overlapping set of mitosis-associated transcripts. We conclude that when the meiotic chromosomal program is initiated, Meioc is simultaneously induced so as to extend meiotic prophase. Specifically, MEIOC, together with YTHDC2, promotes a meiotic (as opposed to mitotic) cell cycle program via post-transcriptional control of their target transcripts.


The RNA-binding protein ELAVL1/HuR is essential for mouse spermatogenesis, acting both at meiotic and postmeiotic stages.

  • Mai Nguyen Chi‎ et al.
  • Molecular biology of the cell‎
  • 2011‎

Posttranscriptional mechanisms are crucial to regulate spermatogenesis. Accurate protein synthesis during germ cell development relies on RNA binding proteins that control the storage, stability, and translation of mRNAs in a tightly and temporally regulated manner. Here, we focused on the RNA binding protein Embryonic Lethal Abnormal Vision (ELAV) L1/Human antigen R (HuR) known to be a key regulator of posttranscriptional regulation in somatic cells but the function of which during gametogenesis has never been investigated. In this study, we have used conditional loss- and gain-of-function approaches to address this issue in mice. We show that targeted deletion of HuR specifically in germ cells leads to male but not female sterility. Mutant males are azoospermic because of the extensive death of spermatocytes at meiotic divisions and failure of spermatid elongation. The latter defect is also observed upon HuR overexpression. To elucidate further the molecular mechanisms underlying spermatogenesis defects in HuR-deleted and -overexpressing testes, we undertook a target gene approach and discovered that heat shock protein (HSP)A2/HSP70-2, a crucial regulator of spermatogenesis, was down-regulated in both situations. HuR specifically binds hspa2 mRNA and controls its expression at the translational level in germ cells. Our study provides the first genetic evidence of HuR involvement during spermatogenesis and reveals Hspa2 as a target for HuR.


Amplification of a broad transcriptional program by a common factor triggers the meiotic cell cycle in mice.

  • Mina L Kojima‎ et al.
  • eLife‎
  • 2019‎

The germ line provides the cellular link between generations of multicellular organisms, its cells entering the meiotic cell cycle only once each generation. However, the mechanisms governing this initiation of meiosis remain poorly understood. Here, we examined cells undergoing meiotic initiation in mice, and we found that initiation involves the dramatic upregulation of a transcriptional network of thousands of genes whose expression is not limited to meiosis. This broad gene expression program is directly upregulated by STRA8, encoded by a germ cell-specific gene required for meiotic initiation. STRA8 binds its own promoter and those of thousands of other genes, including meiotic prophase genes, factors mediating DNA replication and the G1-S cell-cycle transition, and genes that promote the lengthy prophase unique to meiosis I. We conclude that, in mice, the robust amplification of this extraordinarily broad transcription program by a common factor triggers initiation of meiosis.


Unraveling transcriptome dynamics in human spermatogenesis.

  • Sabrina Z Jan‎ et al.
  • Development (Cambridge, England)‎
  • 2017‎

Spermatogenesis is a dynamic developmental process that includes stem cell proliferation and differentiation, meiotic cell divisions and extreme chromatin condensation. Although studied in mice, the molecular control of human spermatogenesis is largely unknown. Here, we developed a protocol that enables next-generation sequencing of RNA obtained from pools of 500 individually laser-capture microdissected cells of specific germ cell subtypes from fixed human testis samples. Transcriptomic analyses of these successive germ cell subtypes reveals dynamic transcription of over 4000 genes during human spermatogenesis. At the same time, many of the genes encoding for well-established meiotic and post-meiotic proteins are already present in the pre-meiotic phase. Furthermore, we found significant cell type-specific expression of post-transcriptional regulators, including expression of 110 RNA-binding proteins and 137 long non-coding RNAs, most of them previously not linked to spermatogenesis. Together, these data suggest that the transcriptome of precursor cells already contains the genes necessary for cellular differentiation and that timely translation controlled by post-transcriptional regulators is crucial for normal development. These established transcriptomes provide a reference catalog for further detailed studies on human spermatogenesis and spermatogenic failure.


Polycomb protein SCML2 associates with USP7 and counteracts histone H2A ubiquitination in the XY chromatin during male meiosis.

  • Mengcheng Luo‎ et al.
  • PLoS genetics‎
  • 2015‎

Polycomb group proteins mediate transcriptional silencing in diverse developmental processes. Sex chromosomes undergo chromosome-wide transcription silencing during male meiosis. Here we report that mouse SCML2 (Sex comb on midleg-like 2), an X chromosome-encoded polycomb protein, is specifically expressed in germ cells, including spermatogonia, spermatocytes, and round spermatids. SCML2 associates with phosphorylated H2AX and localizes to the XY body in spermatocytes. Loss of SCML2 in mice causes defective spermatogenesis, resulting in sharply reduced sperm production. SCML2 interacts with and recruits a deubiquitinase, USP7, to the XY body in spermatocytes. In the absence of SCML2, USP7 fails to accumulate on the XY body, whereas H2A monoubiquitination is dramatically augmented in the XY chromatin. Our results demonstrate that the SCML2/USP7 complex constitutes a novel molecular pathway in modulating the epigenetic state of sex chromosomes during male meiosis.


The Dnmt3L ADD Domain Controls Cytosine Methylation Establishment during Spermatogenesis.

  • Georgios Vlachogiannis‎ et al.
  • Cell reports‎
  • 2015‎

A critical aspect of mammalian gametogenesis is the reprogramming of genomic DNA methylation. The catalytically inactive adaptor Dnmt3L is essential to ensuring this occurs correctly, but the mechanism by which it functions is unclear. Using gene targeting to engineer a single-amino-acid mutation, we show that the Dnmt3L histone H3 binding domain (ADD) is necessary for spermatogenesis. Genome-wide single-base-resolution DNA methylome analysis of mutant germ cells revealed overall reductions in CG methylation at repetitive sequences and non-promoter CpG islands. Strikingly, we also observe an even more severe loss of non-CG methylation, suggesting an unexpected role for the ADD in this process. These epigenetic deficiencies were coupled with defects in spermatogonia, with mutant cells displaying marked changes in gene expression and reactivation of retrotransposons. Our results demonstrate that the Dnmt3L ADD is necessary for Dnmt3L function and full reproductive fitness.


ATR is a multifunctional regulator of male mouse meiosis.

  • Alexander Widger‎ et al.
  • Nature communications‎
  • 2018‎

Meiotic cells undergo genetic exchange between homologs through programmed DNA double-strand break (DSB) formation, recombination and synapsis. In mice, the DNA damage-regulated phosphatidylinositol-3-kinase-like kinase (PIKK) ATM regulates all of these processes. However, the meiotic functions of the PIKK ATR have remained elusive, because germline-specific depletion of this kinase is challenging. Here we uncover roles for ATR in male mouse prophase I progression. ATR deletion causes chromosome axis fragmentation and germ cell elimination at mid pachynema. This elimination cannot be rescued by deletion of ATM and the third DNA damage-regulated PIKK, PRKDC, consistent with the existence of a PIKK-independent surveillance mechanism in the mammalian germline. ATR is required for synapsis, in a manner genetically dissociable from DSB formation. ATR also regulates loading of recombinases RAD51 and DMC1 to DSBs and recombination focus dynamics on synapsed and asynapsed chromosomes. Our studies reveal ATR as a critical regulator of mouse meiosis.


Cell type-specific role of CBX2 and its disordered region in spermatogenesis.

  • Jongmin J Kim‎ et al.
  • Genes & development‎
  • 2023‎

Polycomb group (PcG) proteins maintain the repressed state of lineage-inappropriate genes and are therefore essential for embryonic development and adult tissue homeostasis. One critical function of PcG complexes is modulating chromatin structure. Canonical Polycomb repressive complex 1 (cPRC1), particularly its component CBX2, can compact chromatin and phase-separate in vitro. These activities are hypothesized to be critical for forming a repressed physical environment in cells. While much has been learned by studying these PcG activities in cell culture models, it is largely unexplored how cPRC1 regulates adult stem cells and their subsequent differentiation in living animals. Here, we show in vivo evidence of a critical nonenzymatic repressive function of cPRC1 component CBX2 in the male germline. CBX2 is up-regulated as spermatogonial stem cells differentiate and is required to repress genes that were active in stem cells. CBX2 forms condensates (similar to previously described Polycomb bodies) that colocalize with target genes bound by CBX2 in differentiating spermatogonia. Single-cell analyses of mosaic Cbx2 mutant testes show that CBX2 is specifically required to produce differentiating A1 spermatogonia. Furthermore, the region of CBX2 responsible for compaction and phase separation is needed for the long-term maintenance of male germ cells in the animal. These results emphasize that the regulation of chromatin structure by CBX2 at a specific stage of spermatogenesis is critical, which distinguishes this from a mechanism that is reliant on histone modification.


A Neofunctionalized X-Linked Ampliconic Gene Family Is Essential for Male Fertility and Equal Sex Ratio in Mice.

  • Alyssa N Kruger‎ et al.
  • Current biology : CB‎
  • 2019‎

The mammalian sex chromosomes harbor an abundance of newly acquired ampliconic genes, although their functions require elucidation [1-9]. Here, we demonstrate that the X-linked Slx and Slxl1 ampliconic gene families represent mouse-specific neofunctionalized copies of a meiotic synaptonemal complex protein, Sycp3. In contrast to the meiotic role of Sycp3, CRISPR-loxP-mediated multi-megabase deletions of the Slx (5 Mb) and Slxl1 (2.3Mb) ampliconic regions result in post-meiotic defects, abnormal sperm, and male infertility. Males carrying Slxl1 deletions sire more male offspring, whereas males carrying Slx and Slxl1 duplications sire more female offspring, which directly correlates with Slxl1 gene dosage and gene expression levels. SLX and SLXL1 proteins interact with spindlin protein family members (SPIN1 and SSTY1/2) and males carrying Slxl1 deletions downregulate a sex chromatin modifier, Scml2, leading us to speculate that Slx and Slxl1 function in chromatin regulation. Our study demonstrates how newly acquired X-linked genes can rapidly evolve new and essential functions and how gene amplification can increase sex chromosome transmission.


shRNA off-target effects in vivo: impaired endogenous siRNA expression and spermatogenic defects.

  • Hye-Won Song‎ et al.
  • PloS one‎
  • 2015‎

RNA interference (RNAi) is widely used to determine the function of genes. We chose this approach to assess the collective function of the highly related reproductive homeobox 3 (Rhox3) gene paralogs. Using a Rhox3 short hairpin (sh) RNA with 100% complementarity to all 8 Rhox3 paralogs, expressed from a CRE-regulated transgene, we successfully knocked down Rhox3 expression in male germ cells in vivo. These Rhox3-shRNA transgenic mice had dramatic defects in spermatogenesis, primarily in spermatocytes and round spermatids. To determine whether this phenotype was caused by reduced Rhox3 expression, we generated mice expressing the Rhox3-shRNA but lacking the intended target of the shRNA-Rhox3. These double-mutant mice had a phenotype indistinguishable from Rhox3-shRNA-expressing mice that was different from mice lacking the Rhox3 paralogs, indicating that the Rhox3 shRNA disrupts spermatogenesis independently of Rhox3. Rhox3-shRNA transgenic mice displayed few alterations in the expression of protein-coding genes, but instead exhibited reduced levels of all endogenous siRNAs we tested. This supported a model in which the Rhox3 shRNA causes spermatogenic defects by sequestering one or more components of the endogenous small RNA biogenesis machinery. Our study serves as a warning for those using shRNA approaches to investigate gene functions in vivo.


GCNA Interacts with Spartan and Topoisomerase II to Regulate Genome Stability.

  • Gregoriy A Dokshin‎ et al.
  • Developmental cell‎
  • 2020‎

GCNA proteins are expressed across eukarya in pluripotent cells and have conserved functions in fertility. GCNA homologs Spartan (DVC-1) and Wss1 resolve DNA-protein crosslinks (DPCs), including Topoisomerase-DNA adducts, during DNA replication. Here, we show that GCNA mutants in mouse and C. elegans display defects in genome maintenance including DNA damage, aberrant chromosome condensation, and crossover defects in mouse spermatocytes and spontaneous genomic rearrangements in C. elegans. We show that GCNA and topoisomerase II (TOP2) physically interact in both mice and worms and colocalize on condensed chromosomes during mitosis in C. elegans embryos. Moreover, C. elegans gcna-1 mutants are hypersensitive to TOP2 poison. Together, our findings support a model in which GCNA provides genome maintenance functions in the germline and may do so, in part, by promoting the resolution of TOP2 DPCs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: