Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 123 papers

Introgression of a Complex Genomic Structural Variation Causes Hybrid Male Sterility in GJ Rice (Oryza sativa L.) Subspecies.

  • Na Xu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Hybrids between different subspecies of rice Oryza sativa L. commonly show hybrid sterility. Here we show that a widely planted commercial japonica/GJ variety, DHX2, exhibited hybrid sterility when crossing with other GJ varieties. Using the high-quality genome assembly, we identified three copies of the Sc gene in DHX2, whereas Nipponbare (Nip) had only one copy of Sc. Knocking out the extra copies of Sc in DHX2 significantly improved the pollen fertility of the F1 plant of DHX2/Nip cross. The population structure analysis revealed that a slight introgression from Basmati1 might occur in the genome of DHX2. We demonstrated that both DHX2 and Basmati1 harbored three copies of Sc. Moreover, the introgression of GS3 and BADH2/fgr from Basmati1 confers the slender and fragrance grain of DHX2. These results add to our understanding of the hybrid sterility of inter-subspecies and intra-subspecies and may provide a novel strategy for hybrid breeding.


Structural Variation Evolution at the 15q11-q13 Disease-Associated Locus.

  • Annalisa Paparella‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The impact of segmental duplications on human evolution and disease is only just starting to unfold, thanks to advancements in sequencing technologies that allow for their discovery and precise genotyping. The 15q11-q13 locus is a hotspot of recurrent copy number variation associated with Prader-Willi/Angelman syndromes, developmental delay, autism, and epilepsy and is mediated by complex segmental duplications, many of which arose recently during evolution. To gain insight into the instability of this region, we characterized its architecture in human and nonhuman primates, reconstructing the evolutionary history of five different inversions that rearranged the region in different species primarily by accumulation of segmental duplications. Comparative analysis of human and nonhuman primate duplication structures suggests a human-specific gain of directly oriented duplications in the regions flanking the GOLGA cores and HERC segmental duplications, representing potential genomic drivers for the human-specific expansions. The increasing complexity of segmental duplication organization over the course of evolution underlies its association with human susceptibility to recurrent disease-associated rearrangements.


Identification of Structural Variation from NGS-Based Non-Invasive Prenatal Testing.

  • Ondrej Pös‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Copy number variants (CNVs) are an important type of human genome variation, which play a significant role in evolution contribute to population diversity and human genetic diseases. In recent years, next generation sequencing has become a valuable tool for clinical diagnostics and to provide sensitive and accurate approaches for detecting CNVs. In our previous work, we described a non-invasive prenatal test (NIPT) based on low-coverage massively parallel whole-genome sequencing of total plasma DNA for detection of CNV aberrations ≥600 kbp. We reanalyzed NIPT genomic data from 5018 patients to evaluate CNV aberrations in the Slovak population. Our analysis of autosomal chromosomes identified 225 maternal CNVs (47 deletions; 178 duplications) ranging from 600 to 7820 kbp. According to the ClinVar database, 137 CNVs (60.89%) were fully overlapping with previously annotated variants, 66 CNVs (29.33%) were in partial overlap, and 22 CNVs (9.78%) did not overlap with any previously described variant. Identified variants were further classified with the AnnotSV method. In summary, we identified 129 likely benign variants, 13 variants of uncertain significance, and 83 likely pathogenic variants. In this study, we use NIPT as a valuable source of population specific data. Our results suggest the utility of genomic data from commercial CNV analysis test as background for a population study.


Structural Variation (SV) Markers in the Basidiomycete Volvariella volvacea and Their Application in the Construction of a Genetic Map.

  • Wei Wang‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Molecular markers and genetic maps are useful tools in genetic studies. Novel molecular markers and their applications have been developed in recent years. With the recent advancements in sequencing technology, the genomic sequences of an increasingly great number of fungi have become available. A novel type of molecular marker was developed to construct the first reported linkage map of the edible and economically important basidiomycete Volvariella volvacea by using 104 structural variation (SV) markers that are based on the genomic sequences. Because of the special and simple life cycle in basidiomycete, SV markers can be effectively developed by genomic comparison and tested in single spore isolates (SSIs). This stable, convenient and rapidly developed marker may assist in the construction of genetic maps and facilitate genomic research for other species of fungi.


Ontogenetic Variation in Macrocyclic and Hemicyclic Poplar Rust Fungi.

  • Zhongdong Yu‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Melampsora larici-populina (Mlp), M. medusae (Mmed), M. magnusiana (Mmag), and M. pruinosae (Mpr) are epidemic rust fungi in China. The first two are macrocyclic rust fungi distributed in temperate humid environments. The latter two are hemicyclic rusts, mainly distributed in arid and semi-arid areas. Ontogenetic variation that comes with this arid-resistance is of great interest-and may help us predict the influence of a warmer, drier, climate on fungal phylogeny. To compare the differences in the life history and ontogeny between the two types of rust, we cloned mating type genes, STE3.4 and STE3.3 using RACE-smart technology. Protein structures, functions, and mutant loci were compared across each species. We also used microscopy to compare visible cytological differences at each life stage for the fungal species, looking for variation in structure and developmental timing. Quantitative PCR technology was used to check the expression of nuclear fusion and division genes downstream of STE3.3 and STE3.4. Encoding amino acids of STE3.3 and STE3.4 in hemicyclic rusts are shorter than these in the macrocyclic rusts. Both STE3.3 and STE3.4 interact with a protein kinase superfamily member EGG12818 and an E3 ubiquitin protein ligase EGG09709 directly, and activating G-beta conformational changes. The mutation at site 74th amino acid in the conserved transmembrane domain of STE3.3 ascribes to a positive selection, in which alanine (Ala) is changed to phenylalanine (Phe) in hemicyclic rusts, and a mutation with Tyr lost at site 387th in STE3.4, where it is the binding site for β-D-Glucan. These mutants are speculated corresponding to the insensitivity of hemicyclic rust pheromone receptors to interact with MFa pheromones, and lead to Mnd1 unexpressed in teliospora, and they result in the diploid nuclei division failure and the sexual stage missing in the life cycle. A Phylogenic tree based on STE3.4 gene suggests these two rust types diverged about 14.36 million years ago. Although these rusts share a similar uredia and telia stage, they show markedly different wintering strategies. Hemicyclic rusts overwinter in the poplar buds endophytically, their urediniospores developing thicker cell walls. They form haustoria with a collar-like extrahaustorial membrane neck and induce host thickened callose cell walls, all ontogenetic adaptations to arid environments.


Role of Genetic Variation in ABC Transporters in Breast Cancer Prognosis and Therapy Response.

  • Viktor Hlaváč‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Breast cancer is the most common cancer in women in the world. The role of germline genetic variability in ATP-binding cassette (ABC) transporters in cancer chemoresistance and prognosis still needs to be elucidated. We used next-generation sequencing to assess associations of germline variants in coding and regulatory sequences of all human ABC genes with response of the patients to the neoadjuvant cytotoxic chemotherapy and disease-free survival (n = 105). A total of 43 prioritized variants associating with response or survival in the above testing phase were then analyzed by allelic discrimination in the large validation set (n = 802). Variants in ABCA4, ABCA9, ABCA12, ABCB5, ABCC5, ABCC8, ABCC11, and ABCD4 associated with response and variants in ABCA7, ABCA13, ABCC4, and ABCG8 with survival of the patients. No association passed a false discovery rate test, however, the rs17822931 (Gly180Arg) in ABCC11, associating with response, and the synonymous rs17548783 in ABCA13 (survival) have a strong support in the literature and are, thus, interesting for further research. Although replicated associations have not reached robust statistical significance, the role of ABC transporters in breast cancer should not be ruled out. Future research and careful validation of findings will be essential for assessment of genetic variation which was not in the focus of this study, e.g., non-coding sequences, copy numbers, and structural variations together with somatic mutations.


Structural Mapping of Missense Mutations in the Pex1/Pex6 Complex.

  • Anne Schieferdecker‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Peroxisome biogenesis disorders (PBDs) are nontreatable hereditary diseases with a broad range of severity. Approximately 65% of patients are affected by mutations in the peroxins Pex1 and Pex6. The proteins form the heteromeric Pex1/Pex6 complex, which is important for protein import into peroxisomes. To date, no structural data are available for this AAA+ ATPase complex. However, a wealth of information can be transferred from low-resolution structures of the yeast scPex1/scPex6 complex and homologous, well-characterized AAA+ ATPases. We review the abundant records of missense mutations described in PBD patients with the aim to classify and rationalize them by mapping them onto a homology model of the human Pex1/Pex6 complex. Several mutations concern functionally conserved residues that are implied in ATP hydrolysis and substrate processing. Contrary to fold destabilizing mutations, patients suffering from function-impairing mutations may not benefit from stabilizing agents, which have been reported as potential therapeutics for PBD patients.


Integration of Genomic and Clinical Retrospective Data to Predict Endometrioid Endometrial Cancer Recurrence.

  • Jesus Gonzalez-Bosquet‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Endometrial cancer (EC) incidence and mortality continues to rise. Molecular profiling of EC promises improvement of risk assessment and treatment selection. However, we still lack robust and accurate models to predict those at risk of failing treatment. The objective of this pilot study is to create models with clinical and genomic data that will discriminate patients with EC at risk of disease recurrence. We performed a pilot, retrospective, case−control study evaluating patients with EC, endometrioid type: 7 with recurrence of disease (cases), and 55 without (controls). RNA was extracted from frozen specimens and sequenced (RNAseq). Genomic features from RNAseq included transcriptome expression, genomic, and structural variation. Feature selection for variable reduction was performed with univariate ANOVA with cross-validation. Selected variables, informative for EC recurrence, were introduced in multivariate lasso regression models. Validation of models was performed in machine-learning platforms (ML) and independent datasets (TCGA). The best performing prediction models (out of >170) contained the same lncRNA features (AUC of 0.9, and 95% CI: 0.75, 1.0). Models were validated with excellent performance in ML platforms and good performance in an independent dataset. Prediction models of EC recurrence containing lncRNA features have better performance than models with clinical data alone.


Lineage-Specific Variation in IR Boundary Shift Events, Inversions, and Substitution Rates among Caprifoliaceae s.l. (Dipsacales) Plastomes.

  • Seongjun Park‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Caprifoliaceae s.l. plastid genomes (plastomes) show that one inversion and two inverted repeat boundary shifts occurred in the common ancestor of this family, after which the plastomes are generally conserved. This study reports plastome sequences of five additional species, Fedia cornucopiae, Valeriana fauriei, and Valerianella locusta from the subfamily Valerianoideae, as well as Dipsacus japonicus and Scabiosa comosa from the subfamily Dipsacoideae. Combined with the published plastomes, these plastomes provide new insights into the structural evolution of plastomes within the family. Moreover, the three plastomes from the subfamily Valerianoideae exhibited accelerated nucleotide substitution rates, particularly at synonymous sites, across the family. The patterns of accD sequence divergence in the family are dynamic with structural changes, including interruption of the conserved domain and increases in nonsynonymous substitution rates. In particular, the Valeriana accD gene harbors a large insertion of amino acid repeat (AAR) motifs, and intraspecific polymorphism with a variable number of AARs in the Valeriana accD gene was detected. We found a correlation between intron losses and increased ratios of nonsynonymous to synonymous substitution rates in the clpP gene with intensified positive selection. In addition, two Dipsacoideae plastomes revealed the loss of the plastid-encoded rps15, and a potential functional gene transfer to the nucleus was confirmed.


Structural Features and Phylogenetic Implications of Four New Mitogenomes of Caliscelidae (Hemiptera: Fulgoromorpha).

  • Nian Gong‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

To explore the differences in mitogenome variation and phylogenetics among lineages of the Hemiptera superfamily Fulgoroidea, we sequenced four new mitogenomes of Caliscelidae: two species of the genus Bambusicaliscelis (Caliscelinae: Caliscelini), namely Bambusicaliscelis flavus and B. fanjingensis, and two species of the genus Youtuus (Ommatidiotinae: Augilini), namely Youtuus strigatus and Y. erythrus. The four mitogenomes were 15,922-16,640 bp (base pair) in length, with 37 mitochondrial genes and an AT-rich region. Gene content and arrangement were similar to those of most other sequenced hexapod mitogenomes. All protein-coding genes (PCGs) started with a canonical ATN or GTG and ended with TAA or an incomplete stop codon single T. Except for two transfer RNAs (tRNAs; trnS1 and trnV) lacking a dihydrouridine arm in the four species and trnC lacking a dihydrouridine stem in the Youtuus species, the remaining tRNAs could fold into canonical cloverleaf secondary structures. Phylogenetic analyses based on sequence data of 13 PCGs in the 28 Fulgoroidea species and two outgroups revealed that Delphacidae was monophyletic with strong support. Our data suggest that Fulgoridae is more ancient than Achilidae. Furthermore, Flatidae, Issidae, and Ricaniidae always cluster to form a sister group to Caliscelidae.


HisCoM-G×E: Hierarchical Structural Component Analysis of Gene-Based Gene-Environment Interactions.

  • Sungkyoung Choi‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Gene-environment interaction (G×E) studies are one of the most important solutions for understanding the "missing heritability" problem in genome-wide association studies (GWAS). Although many statistical methods have been proposed for detecting and identifying G×E, most employ single nucleotide polymorphism (SNP)-level analysis. In this study, we propose a new statistical method, Hierarchical structural CoMponent analysis of gene-based Gene-Environment interactions (HisCoM-G×E). HisCoM-G×E is based on the hierarchical structural relationship among all SNPs within a gene, and can accommodate all possible SNP-level effects into a single latent variable, by imposing a ridge penalty, and thus more efficiently takes into account the latent interaction term of G×E. The performance of the proposed method was evaluated in simulation studies, and we applied the proposed method to investigate gene-alcohol intake interactions affecting systolic blood pressure (SBP), using samples from the Korea Associated REsource (KARE) consortium data.


Structural Variations Contribute to the Genetic Etiology of Autism Spectrum Disorder and Language Impairments.

  • Rohan Alibutud‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by restrictive interests and/or repetitive behaviors and deficits in social interaction and communication. ASD is a multifactorial disease with a complex polygenic genetic architecture. Its genetic contributing factors are not yet fully understood, especially large structural variations (SVs). In this study, we aimed to assess the contribution of SVs, including copy number variants (CNVs), insertions, deletions, duplications, and mobile element insertions, to ASD and related language impairments in the New Jersey Language and Autism Genetics Study (NJLAGS) cohort. Within the cohort, ~77% of the families contain SVs that followed expected segregation or de novo patterns and passed our filtering criteria. These SVs affected 344 brain-expressed genes and can potentially contribute to the genetic etiology of the disorders. Gene Ontology and protein-protein interaction network analysis suggested several clusters of genes in different functional categories, such as neuronal development and histone modification machinery. Genes and biological processes identified in this study contribute to the understanding of ASD and related neurodevelopment disorders.


Possible Phenotypic Consequences of Structural Differences in Idic(15) in a Small Cohort of Patients.

  • Márta Czakó‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Among human supernumerary marker chromosomes, the occurrence of isodicentric form of 15 origin is relatively well known due to its high frequency, both in terms of gene content and associated clinical symptoms. The associated epilepsy and autism are typically more severe than in cases with interstitial 15q duplication, despite copy number gain of approximately the same genomic region. Other mechanisms besides segmental aneuploidy and epigenetic changes may also cause this difference. Among the factors influencing the expression of members of the GABAA gene cluster, the imprinting effect and copy number differences has been debated. Limited numbers of studies investigate factors influencing the interaction of GABAA cluster homologues. Five isodicentric (15) patients are reported with heterogeneous symptoms, and structural differences of their isodicentric chromosomes based on array comparative genomic hybridization results. Relations between the structure and the heterogeneous clinical picture are discussed, raising the possibility that the structure of the isodicentric (15), which has an asymmetric breakpoint and consequently a lower copy number segment, would be the basis of the imbalance of the GABAA homologues. Studies of trans interaction and regulation of GABAA cluster homologues are needed to resolve this issue, considering copy number differences within the isodicentric chromosome 15.


Molecular Genetics of GLUT1DS Italian Pediatric Cohort: 10 Novel Disease-Related Variants and Structural Analysis.

  • Alessia Mauri‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

GLUT1 deficiency syndrome (GLUT1DS1; OMIM #606777) is a rare genetic metabolic disease, characterized by infantile-onset epileptic encephalopathy, global developmental delay, progressive microcephaly, and movement disorders (e.g., spasticity and dystonia). It is caused by heterozygous mutations in the SLC2A1 gene, which encodes the GLUT1 protein, a glucose transporter across the blood-brain barrier (BBB). Most commonly, these variants arise de novo resulting in sporadic cases, although several familial cases with AD inheritance pattern have been described. Twenty-seven Italian pediatric patients, clinically suspect of GLUT1DS from both sporadic and familial cases, have been enrolled. We detected by trios sequencing analysis 25 different variants causing GLUT1DS. Of these, 40% of the identified variants (10 out of 25) had never been reported before, including missense, frameshift, and splice site variants. Their structural mapping on the X-ray structure of GLUT1 strongly suggested the potential pathogenic effects of these novel disease-related mutations, broadening the genotypic spectrum heterogeneity found in the SLC2A1 gene. Moreover, 24% is located in a vulnerable region of the GLUT1 protein that involves transmembrane 4 and 5 helices encoded by exon 4, confirming a mutational hotspot in the SLC2A1 gene. Lastly, we investigated possible correlations between mutation type and clinical and biochemical data observed in our GLUT1DS cohort, revealing that splice site and frameshift variants are related to a more severe phenotype and low CSF parameters.


Comparative Analysis of Structural Variations Due to Genome Shuffling of Bacillus Subtilis VS15 for Improved Cellulase Production.

  • Soujanya Lakshmi Ega‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Cellulose is one of the most abundant and renewable biomass products used for the production of bioethanol. Cellulose can be efficiently hydrolyzed by Bacillus subtilis VS15, a strain isolate obtained from decomposing logs. A genome shuffling approach was implemented to improve the cellulase activity of Bacillus subtilis VS15. Mutant strains were created using ethyl methyl sulfonate (EMS), N-Methyl-N' nitro-N-nitrosoguanidine (NTG), and ultraviolet light (UV) followed by recursive protoplast fusion. After two rounds of shuffling, the mutants Gb2, Gc8, and Gd7 were produced that had an increase in cellulase activity of 128%, 148%, and 167%, respectively, in comparison to the wild type VS15. The genetic diversity of the shuffled strain Gd7 and wild type VS15 was compared at whole genome level. Genomic-level comparisons identified a set of eight genes, consisting of cellulase and regulatory genes, of interest for further analyses. Various genes were identified with insertions and deletions that may be involved in improved celluase production in Gd7.. Strain Gd7 maintained the capability of hydrolyzing wheatbran to glucose and converting glucose to ethanol by fermentation with Saccharomyces cerevisiae of the wild type VS17. This ability was further confirmed by the acidified potassium dichromate (K2Cr2O7) method.


Genomic, Clinical, and Behavioral Characterization of 15q11.2 BP1-BP2 Deletion (Burnside-Butler) Syndrome in Five Families.

  • Isaac Baldwin‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The 15q11.2 BP1-BP2 deletion (Burnside-Butler) syndrome is emerging as the most common cytogenetic finding in patients with neurodevelopmental or autism spectrum disorders (ASD) presenting for microarray genetic testing. Clinical findings in Burnside-Butler syndrome include developmental and motor delays, congenital abnormalities, learning and behavioral problems, and abnormal brain findings. To better define symptom presentation, we performed comprehensive cognitive and behavioral testing, collected medical and family histories, and conducted clinical genetic evaluations. The 15q11.2 BP1-BP2 region includes the TUBGCP5, CYFIP1, NIPA1, and NIPA2 genes. To determine if additional genomic variation outside of the 15q11.2 region influences expression of symptoms in Burnside-Butler syndrome, whole-exome sequencing was performed on the parents and affected children for the first time in five families with at least one parent and child with the 15q1l.2 BP1-BP2 deletion. In total, there were 453 genes with possibly damaging variants identified across all of the affected children. Of these, 99 genes had exclusively de novo variants and 107 had variants inherited exclusively from the parent without the deletion. There were three genes (APBB1, GOLGA2, and MEOX1) with de novo variants that encode proteins evidenced to interact with CYFIP1. In addition, one other gene of interest (FAT3) had variants inherited from the parent without the deletion and encoded a protein interacting with CYFIP1. The affected individuals commonly displayed a neurodevelopmental phenotype including ASD, speech delay, abnormal reflexes, and coordination issues along with craniofacial findings and orthopedic-related connective tissue problems. Of the 453 genes with variants, 35 were associated with ASD. On average, each affected child had variants in 6 distinct ASD-associated genes (x¯ = 6.33, sd = 3.01). In addition, 32 genes with variants were included on clinical testing panels from Clinical Laboratory Improvement Amendments (CLIA) approved and accredited commercial laboratories reflecting other observed phenotypes. Notably, the dataset analyzed in this study was small and reported results will require validation in larger samples as well as functional follow-up. Regardless, we anticipate that results from our study will inform future research into the genetic factors influencing diverse symptoms in patients with Burnside-Butler syndrome, an emerging disorder with a neurodevelopmental behavioral phenotype.


Genomic Adaption and Mutational Patterns in a HaCaT Subline Resistant to Alkylating Agents and Ionizing Radiation.

  • Reinhard Ullmann‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Sulfur mustard (SM) is a chemical warfare agent that can damage DNA via alkylation and oxidative stress. Because of its genotoxicity, SM is cancerogenic and the progenitor of many chemotherapeutics. Previously, we developed an SM-resistant cell line via chronic exposure of the popular keratinocyte cell line HaCaT to increasing doses of SM over a period of 40 months. In this study, we compared the genomic landscape of the SM-resistant cell line HaCaT/SM to its sensitive parental line HaCaT in order to gain insights into genetic changes associated with continuous alkylation and oxidative stress. We established chromosome numbers by cytogenetics, analyzed DNA copy number changes by means of array Comparative Genomic Hybridization (array CGH), employed the genome-wide chromosome conformation capture technique Hi-C to detect chromosomal translocations, and derived mutational signatures by whole-genome sequencing. We observed that chronic SM exposure eliminated the initially prevailing hypotetraploid cell population in favor of a hyperdiploid one, which contrasts with previous observations that link polyploidization to increased tolerance and adaptability toward genotoxic stress. Furthermore, we observed an accumulation of chromosomal translocations, frequently flanked by DNA copy number changes, which indicates a high rate of DNA double-strand breaks and their misrepair. HaCaT/SM-specific single-nucleotide variants showed enrichment of C > A and T > A transversions and a lower rate of deaminated cytosines in the CpG dinucleotide context. Given the frequent use of HaCaT in toxicology, this study provides a valuable data source with respect to the original genotype of HaCaT and the mutational signatures associated with chronic alkylation and oxidative stress.


Long-Read Sequencing Improves the Detection of Structural Variations Impacting Complex Non-Coding Elements of the Genome.

  • Ghausia Begum‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

The advent of long-read sequencing offers a new assessment method of detecting genomic structural variation (SV) in numerous rare genetic diseases. For autism spectrum disorders (ASD) cases where pathogenic variants fail to be found in the protein-coding genic regions along chromosomes, we proposed a scalable workflow to characterize the risk factor of SVs impacting non-coding elements of the genome. We applied whole-genome sequencing on an Emirati family having three children with ASD using long and short-read sequencing technology. A series of analytical pipelines were established to identify a set of SVs with high sensitivity and specificity. At 15-fold coverage, we observed that long-read sequencing technology (987 variants) detected a significantly higher number of SVs when compared to variants detected using short-read technology (509 variants) (p-value < 1.1020 × 10-57). Further comparison showed 97.9% of long-read sequencing variants were spanning within the 1-100 kb size range (p-value < 9.080 × 10-67) and impacting over 5000 genes. Moreover, long-read variants detected 604 non-coding RNAs (p-value < 9.02 × 10-9), comprising 58% microRNA, 31.9% lncRNA, and 9.1% snoRNA. Even at low coverage, long-read sequencing has shown to be a reliable technology in detecting SVs impacting complex elements of the genome.


Complete Chloroplast Genome of Cercis chuniana (Fabaceae) with Structural and Genetic Comparison to Six Species in Caesalpinioideae.

  • Wanzhen Liu‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

The subfamily Caesalpinioideae of the Fabaceae has long been recognized as non-monophyletic due to its controversial phylogenetic relationships. Cercis chuniana, endemic to China, is a representative species of Cercis L. placed within Caesalpinioideae in the older sense. Here, we report the whole chloroplast (cp) genome of C. chuniana and compare it to six other species from the Caesalpinioideae. Comparative analyses of gene synteny and simple sequence repeats (SSRs), as well as estimation of nucleotide diversity, the relative ratios of synonymous and nonsynonymous substitutions (dn/ds), and Kimura 2-parameter (K2P) interspecific genetic distances, were all conducted. The whole cp genome of C. chuniana was found to be 158,433 bp long with a total of 114 genes, 81 of which code for proteins. Nucleotide substitutions and length variation are present, particularly at the boundaries among large single copy (LSC), inverted repeat (IR) and small single copy (SSC) regions. Nucleotide diversity among all species was estimated to be 0.03, the average dn/ds ratio 0.3177, and the average K2P value 0.0372. Ninety-one SSRs were identified in C. chuniana, with the highest proportion in the LSC region. Ninety-seven species from the old Caesalpinioideae were selected for phylogenetic reconstruction, the analysis of which strongly supports the monophyly of Cercidoideae based on the new classification of the Fabaceae. Our study provides genomic information for further phylogenetic reconstruction and biogeographic inference of Cercis and other legume species.


Genome-Wide Identification and Variation Analysis of JAZ Family Reveals BnaJAZ8.C03 Involved in the Resistance to Plasmodiophora brassicae in Brassica napus.

  • Lixia Li‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Clubroot caused by Plasmodiophora brassicae led to a significant decrease in the yield and quality of Brassica napus, one of the most important oil crops in the world. JAZ proteins are an essential repressor of jasmonates (JAs) signaling cascades, which have been reported to regulate the resistance to P. brassicae in B. napus. In this study, we identified 51, 25 and 26 JAZ proteins in B. napus, B. rapa and B. oleracea, respectively. Phylogenetic analysis displayed that the notedJAZ proteins were divided into six groups. The JAZ proteins clustered in the same group shared a similar motif composition and distribution order. The 51 BnaJAZs were not evenly assigned on seventeen chromosomes in B. napus, except for A04 and C07. The BnaJAZs of the AtJAZ7/AtJAZ8 group presented themselves to be significantly up-regulated after inoculation by P. brassicae. Variation analysis in a population with a specific resistance performance in P. brassicae displayed a 64 bp translocation in BnaC03T0663300ZS (BnaJAZ8.C03, homologous to AtJAZ8) with an 8% reduction in the disease index on average. Through protein-protein interaction analysis, 65 genes were identified that might be involved in JAZ8 regulation of resistance to P. brassicae in B. napus, which provided new clues for understanding the resistance mechanism to P. brassicae.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: