Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 109 papers

Long-read-based human genomic structural variation detection with cuteSV.

  • Tao Jiang‎ et al.
  • Genome biology‎
  • 2020‎

Long-read sequencing is promising for the comprehensive discovery of structural variations (SVs). However, it is still non-trivial to achieve high yields and performance simultaneously due to the complex SV signatures implied by noisy long reads. We propose cuteSV, a sensitive, fast, and scalable long-read-based SV detection approach. cuteSV uses tailored methods to collect the signatures of various types of SVs and employs a clustering-and-refinement method to implement sensitive SV detection. Benchmarks on simulated and real long-read sequencing datasets demonstrate that cuteSV has higher yields and scaling performance than state-of-the-art tools. cuteSV is available at https://github.com/tjiangHIT/cuteSV .


SQUID: transcriptomic structural variation detection from RNA-seq.

  • Cong Ma‎ et al.
  • Genome biology‎
  • 2018‎

Transcripts are frequently modified by structural variations, which lead to fused transcripts of either multiple genes, known as a fusion gene, or a gene and a previously non-transcribed sequence. Detecting these modifications, called transcriptomic structural variations (TSVs), especially in cancer tumor sequencing, is an important and challenging computational problem. We introduce SQUID, a novel algorithm to predict both fusion-gene and non-fusion-gene TSVs accurately from RNA-seq alignments. SQUID unifies both concordant and discordant read alignments into one model and doubles the precision on simulation data compared to other approaches. Using SQUID, we identify novel non-fusion-gene TSVs on TCGA samples.


GRIDSS2: comprehensive characterisation of somatic structural variation using single breakend variants and structural variant phasing.

  • Daniel L Cameron‎ et al.
  • Genome biology‎
  • 2021‎

GRIDSS2 is the first structural variant caller to explicitly report single breakends-breakpoints in which only one side can be unambiguously determined. By treating single breakends as a fundamental genomic rearrangement signal on par with breakpoints, GRIDSS2 can explain 47% of somatic centromere copy number changes using single breakends to non-centromere sequence. On a cohort of 3782 deeply sequenced metastatic cancers, GRIDSS2 achieves an unprecedented 3.1% false negative rate and 3.3% false discovery rate and identifies a novel 32-100 bp duplication signature. GRIDSS2 simplifies complex rearrangement interpretation through phasing of structural variants with 16% of somatic calls phasable using paired-end sequencing.


Evaluating nanopore sequencing data processing pipelines for structural variation identification.

  • Anbo Zhou‎ et al.
  • Genome biology‎
  • 2019‎

Structural variations (SVs) account for about 1% of the differences among human genomes and play a significant role in phenotypic variation and disease susceptibility. The emerging nanopore sequencing technology can generate long sequence reads and can potentially provide accurate SV identification. However, the tools for aligning long-read data and detecting SVs have not been thoroughly evaluated.


Towards a comprehensive structural variation map of an individual human genome.

  • Andy W Pang‎ et al.
  • Genome biology‎
  • 2010‎

Several genomes have now been sequenced, with millions of genetic variants annotated. While significant progress has been made in mapping single nucleotide polymorphisms (SNPs) and small (<10 bp) insertion/deletions (indels), the annotation of larger structural variants has been less comprehensive. It is still unclear to what extent a typical genome differs from the reference assembly, and the analysis of the genomes sequenced to date have shown varying results for copy number variation (CNV) and inversions.


Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing.

  • Shunichi Kosugi‎ et al.
  • Genome biology‎
  • 2019‎

Structural variations (SVs) or copy number variations (CNVs) greatly impact the functions of the genes encoded in the genome and are responsible for diverse human diseases. Although a number of existing SV detection algorithms can detect many types of SVs using whole genome sequencing (WGS) data, no single algorithm can call every type of SVs with high precision and high recall.


Retrotransposition of gene transcripts leads to structural variation in mammalian genomes.

  • Adam D Ewing‎ et al.
  • Genome biology‎
  • 2013‎

Retroposed processed gene transcripts are an important source of material for new gene formation on evolutionary timescales. Most prior work on gene retrocopy discovery compared copies in reference genome assemblies to their source genes. Here, we explore gene retrocopy insertion polymorphisms (GRIPs) that are present in the germlines of individual humans, mice, and chimpanzees, and we identify novel gene retrocopy insertions in cancerous somatic tissues that are absent from patient-matched non-cancer genomes.


Modeling double strand break susceptibility to interrogate structural variation in cancer.

  • Tracy J Ballinger‎ et al.
  • Genome biology‎
  • 2019‎

Structural variants (SVs) are known to play important roles in a variety of cancers, but their origins and functional consequences are still poorly understood. Many SVs are thought to emerge from errors in the repair processes following DNA double strand breaks (DSBs).


FusorSV: an algorithm for optimally combining data from multiple structural variation detection methods.

  • Timothy Becker‎ et al.
  • Genome biology‎
  • 2018‎

Comprehensive and accurate identification of structural variations (SVs) from next generation sequencing data remains a major challenge. We develop FusorSV, which uses a data mining approach to assess performance and merge callsets from an ensemble of SV-calling algorithms. It includes a fusion model built using analysis of 27 deep-coverage human genomes from the 1000 Genomes Project. We identify 843 novel SV calls that were not reported by the 1000 Genomes Project for these 27 samples. Experimental validation of a subset of these calls yields a validation rate of 86.7%. FusorSV is available at https://github.com/TheJacksonLaboratory/SVE .


An integrative probabilistic model for identification of structural variation in sequencing data.

  • Suzanne S Sindi‎ et al.
  • Genome biology‎
  • 2012‎

Paired-end sequencing is a common approach for identifying structural variation (SV) in genomes. Discrepancies between the observed and expected alignments indicate potential SVs. Most SV detection algorithms use only one of the possible signals and ignore reads with multiple alignments. This results in reduced sensitivity to detect SVs, especially in repetitive regions. We introduce GASVPro, an algorithm combining both paired read and read depth signals into a probabilistic model which can analyze multiple alignments of reads. GASVPro outperforms existing methods with a 50-90% improvement in specificity on deletions and a 50% improvement on inversions.


Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa.

  • Xu Cai‎ et al.
  • Genome biology‎
  • 2021‎

Despite the prevalence and recurrence of polyploidization in the speciation of flowering plants, its impacts on crop intraspecific genome diversification are largely unknown. Brassica rapa is a mesopolyploid species that is domesticated into many subspecies with distinctive morphotypes.


Global impact of somatic structural variation on the DNA methylome of human cancers.

  • Yiqun Zhang‎ et al.
  • Genome biology‎
  • 2019‎

Genomic rearrangements exert a heavy influence on the molecular landscape of cancer. New analytical approaches integrating somatic structural variants (SSVs) with altered gene features represent a framework by which we can assign global significance to a core set of genes, analogous to established methods that identify genes non-randomly targeted by somatic mutation or copy number alteration. While recent studies have defined broad patterns of association involving gene transcription and nearby SSV breakpoints, global alterations in DNA methylation in the context of SSVs remain largely unexplored.


An integrated peach genome structural variation map uncovers genes associated with fruit traits.

  • Jian Guo‎ et al.
  • Genome biology‎
  • 2020‎

Genome structural variations (SVs) have been associated with key traits in a wide range of agronomically important species; however, SV profiles of peach and their functional impacts remain largely unexplored.


Structural variation and DNA methylation shape the centromere-proximal meiotic crossover landscape in Arabidopsis.

  • Joiselle B Fernandes‎ et al.
  • Genome biology‎
  • 2024‎

Centromeres load kinetochore complexes onto chromosomes, which mediate spindle attachment and allow segregation during cell division. Although centromeres perform a conserved cellular function, their underlying DNA sequences are highly divergent within and between species. Despite variability in DNA sequence, centromeres are also universally suppressed for meiotic crossover recombination, across eukaryotes. However, the genetic and epigenetic factors responsible for suppression of centromeric crossovers remain to be completely defined.


Characterization of structural variation in Tibetans reveals new evidence of high-altitude adaptation and introgression.

  • Cheng Quan‎ et al.
  • Genome biology‎
  • 2021‎

Structural variation (SV) acts as an essential mutational force shaping the evolution and function of the human genome. However, few studies have examined the role of SVs in high-altitude adaptation and little is known of adaptive introgressed SVs in Tibetans so far.


NanoVar: accurate characterization of patients' genomic structural variants using low-depth nanopore sequencing.

  • Cheng Yong Tham‎ et al.
  • Genome biology‎
  • 2020‎

The recent advent of third-generation sequencing technologies brings promise for better characterization of genomic structural variants by virtue of having longer reads. However, long-read applications are still constrained by their high sequencing error rates and low sequencing throughput. Here, we present NanoVar, an optimized structural variant caller utilizing low-depth (8X) whole-genome sequencing data generated by Oxford Nanopore Technologies. NanoVar exhibits higher structural variant calling accuracy when benchmarked against current tools using low-depth simulated datasets. In patient samples, we successfully validate structural variants characterized by NanoVar and uncover normal alternative sequences or alleles which are present in healthy individuals.


Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.

  • Ryan L Collins‎ et al.
  • Genome biology‎
  • 2017‎

Structural variation (SV) influences genome organization and contributes to human disease. However, the complete mutational spectrum of SV has not been routinely captured in disease association studies.


Structural variation and introgression from wild populations in East Asian cattle genomes confer adaptation to local environment.

  • Xiaoting Xia‎ et al.
  • Genome biology‎
  • 2023‎

Structural variations (SVs) in individual genomes are major determinants of complex traits, including adaptability to environmental variables. The Mongolian and Hainan cattle breeds in East Asia are of taurine and indicine origins that have evolved to adapt to cold and hot environments, respectively. However, few studies have investigated SVs in East Asian cattle genomes and their roles in environmental adaptation, and little is known about adaptively introgressed SVs in East Asian cattle.


PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data.

  • Jan O Korbel‎ et al.
  • Genome biology‎
  • 2009‎

Personal-genomics endeavors, such as the 1000 Genomes project, are generating maps of genomic structural variants by analyzing ends of massively sequenced genome fragments. To process these we developed Paired-End Mapper (PEMer; http://sv.gersteinlab.org/pemer). This comprises an analysis pipeline, compatible with several next-generation sequencing platforms; simulation-based error models, yielding confidence-values for each structural variant; and a back-end database. The simulations demonstrated high structural variant reconstruction efficiency for PEMer's coverage-adjusted multi-cutoff scoring-strategy and showed its relative insensitivity to base-calling errors.


The Genomic HyperBrowser: inferential genomics at the sequence level.

  • Geir K Sandve‎ et al.
  • Genome biology‎
  • 2010‎

The immense increase in the generation of genomic scale data poses an unmet analytical challenge, due to a lack of established methodology with the required flexibility and power. We propose a first principled approach to statistical analysis of sequence-level genomic information. We provide a growing collection of generic biological investigations that query pairwise relations between tracks, represented as mathematical objects, along the genome. The Genomic HyperBrowser implements the approach and is available at http://hyperbrowser.uio.no.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: