Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Genetic Architecture Underlying Nascent Speciation-The Evolution of Eurasian Pigs under Domestication.

  • Hai-Bing Xie‎ et al.
  • Molecular biology and evolution‎
  • 2021‎

Speciation is a process whereby the evolution of reproductive barriers leads to isolated species. Although many studies have addressed large-effect genetic footprints in the advanced stages of speciation, the genetics of reproductive isolation in nascent stage of speciation remains unclear. Here, we show that pig domestication offers an interesting model for studying the early stages of speciation in great details. Pig breeds have not evolved the large X-effect of hybrid incompatibility commonly observed between "good species." Instead, deleterious epistatic interactions among multiple autosomal loci are common. These weak Dobzhansky-Muller incompatibilities confer partial hybrid inviability with sex biases in crosses between European and East Asian domestic pigs. The genomic incompatibility is enriched in pathways for angiogenesis, androgen receptor signaling and immunity, with an observation of many highly differentiated cis-regulatory variants. Our study suggests that partial hybrid inviability caused by pervasive but weak interactions among autosomal loci may be a hallmark of nascent speciation in mammals.


Population Genomics Reveals Incipient Speciation, Introgression, and Adaptation in the African Mona Monkey (Cercopithecus mona).

  • Adeola Oluwakemi Ayoola‎ et al.
  • Molecular biology and evolution‎
  • 2021‎

Guenons (tribe Cercopithecini) are the most widely distributed nonhuman primate in the tropical forest belt of Africa and show considerable phenotypic, taxonomic, and ecological diversity. However, genomic information for most species within this group is still lacking. Here, we present a high-quality de novo genome (total 2.90 Gb, contig N50 equal to 22.7 Mb) of the mona monkey (Cercopithecus mona), together with genome resequencing data of 13 individuals sampled across Nigeria. Our results showed differentiation between populations from East and West of the Niger River ∼84 ka and potential ancient introgression in the East population from other mona group species. The PTPRK, FRAS1, BNC2, and EDN3 genes related to pigmentation displayed signals of introgression in the East population. Genomic scans suggest that immunity genes such as AKT3 and IL13 (possibly involved in simian immunodeficiency virus defense), and G6PD, a gene involved in malaria resistance, are under positive natural selection. Our study gives insights into differentiation, natural selection, and introgression in guenons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: