Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

BAG2 promotes tumorigenesis through enhancing mutant p53 protein levels and function.

  • Xuetian Yue‎ et al.
  • eLife‎
  • 2015‎

Tumor suppressor p53 is the most frequently mutated gene in tumors. Many mutant p53 (mutp53) proteins promote tumorigenesis through the gain-of-function (GOF) mechanism. Mutp53 proteins often accumulate to high levels in tumors, which is critical for mutp53 GOF. Its underlying mechanism is poorly understood. Here, we found that BAG2, a protein of Bcl-2 associated athanogene (BAG) family, promotes mutp53 accumulation and GOF in tumors. Mechanistically, BAG2 binds to mutp53 and translocates to the nucleus to inhibit the MDM2-mutp53 interaction, and MDM2-mediated ubiquitination and degradation of mutp53. Thus, BAG2 promotes mutp53 accumulation and GOF in tumor growth, metastasis and chemoresistance. BAG2 is frequently overexpressed in tumors. BAG2 overexpression is associated with poor prognosis in patients and mutp53 accumulation in tumors. These findings revealed a novel and important mechanism for mutp53 accumulation and GOF in tumors, and also uncovered an important role of BAG2 in tumorigenesis through promoting mutp53 accumulation and GOF.


Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

  • Xuetian Yue‎ et al.
  • Genes & development‎
  • 2017‎

Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53.


Influence of microgravity-induced intervertebral disc degeneration of rats on expression levels of p53/p16 and proinflammatory factors.

  • Yang Li‎ et al.
  • Experimental and therapeutic medicine‎
  • 2019‎

Association of expression levels of tumor suppressor proteins p53 and p16 and inflammatory factors in simulated weightlessness with the degree of lumbar disc degeneration of rats was investigated. Magnetic resonance imaging (MRI) examination was performed for rats in control group and experimental group, and the intervertebral disc of rats in both groups was detected and analyzed using hematoxylin and eosin (H&E) histopathological staining. The mRNA expression levels of proinflammatory factors, interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) were detected, and p53 and p16 mRNA and protein expression levels were detected. MRI results showed significant intervertebral disc injury in experimental group. Results of H&E staining revealed that the intervertebral disc injury in experimental group was more serious with obvious signs of degeneration than that in control group. The mRNA expression levels of inflammatory factors (IL-1β, IL-6 and TNF-α) in rats in experimental group were significantly increased compared with those in control group, indicating that the degree of lumbar disc degeneration of rats in simulated weightlessness is closely related to the inflammatory factors. RT-PCR and western blotting proved that both p53 and p16 mRNA and protein expression levels in experimental group were obviously increased. Results of t-test manifested that there were statistically significant differences in p53 and p16 expression levels between control group and experimental group (P<0.01). The abnormal expression levels of p53 and p16 genes have close association with the degree of lumbar disc degeneration of rats in simulated weightlessness, and the lumbar disc degeneration is also closely related to the increased expression levels of inflammatory factors.


CIBZ, a novel BTB domain-containing protein, is involved in mouse spinal cord injury via mitochondrial pathway independent of p53 gene.

  • Yafei Cai‎ et al.
  • PloS one‎
  • 2012‎

Spinal cord injury (SCI) induces both primary uncontrollable mechanical injury and secondary controllable degeneration, which further results in the activation of cell death cascades that mediate delayed tissue damage. To alleviate its impairments and seek for an effective remedy, mRNA differential display was used to investigate gene mRNA expression profiling in mice following SCI. A specific Zinc finger and BTB domain-containing protein, CIBZ, was discovered to implicate in the SCI process for the first time. Further researches indicated that CIBZ was extensively distributed in various tissues, and the expression level was highest in muscle, followed by spinal cord, large intestine, kidney, spleen, thymus, lung, cerebrum, stomach, ovary and heart, respectively. After injury, the CIBZ expression decreased dramatically and reached the lowest level at 8 h, but it gradually increased to the maximal level at 7 d. Caspase-3 and C-terminal-binding protein (CtBP), two CIBZ-related proteins, showed similar tendency. Interestingly, p53 expression remained constant in all groups. Via flow cytometry (FCM) analysis, it was found that the cell death rate in SCI group markedly increased and reached the highest value 1 d after surgery and the mitochondrial transmembrane potential (ΔΨm) at 1 d was the lowest in all groups. Taken together, it is suggested that: (i) in the presence of CtBP, CIBZ gene is involved in secondary injury process and trigger the activation of apoptotic caspase-3 and bax genes independent of p53; (ii) abrupt down-regulation of CtBP at 8 h is a sign of mitochondria dysfunction and the onset of cell death; (iii) it could be used as an inhibitor or target drug of caspase-3 gene to improve spinal cord function.


Identification of key pathways and genes in lung carcinogenesis.

  • Xiang Jin‎ et al.
  • Oncology letters‎
  • 2018‎

The present study aimed to identify key pathways and genes in the pathogenesis of lung cancer. The GSE10072 dataset was downloaded from the Gene Expression Omnibus database. Protein-protein interaction data were collected from Human Protein Reference Database, and 201 pathways were downloaded from the Kyoto Encyclopedia of Genes and Genomes database. Signaling network impact analysis was performed to identify enriched pathways, followed by the construction of a pathway-pathway crosstalk network. Benzopyrene was used to treat normal human lung cells at concentrations of 0.01, 0.1, 1 and 10 µM, and cell viability was measured. Furthermore, growth arrest and DNA damage inducible β (GADD45B), p53, cyclin B, Akt and nuclear factor (NF)-κB protein levels were also measured via western blotting. Impact analysis identified 11 enriched lung cancer-associated KEGG pathways, including 'complement and coagulation cascades', 'ECM-receptor interaction', 'P53 signaling pathway', 'cell adhesion molecules' and 'focal adhesion'. In addition, cell cycle, 'drug metabolism-cytochrome P450', 'metabolic pathways', 'pathways in cancer', 'focal adhesion' and 'antigen processing and presentation' were central in the pathway-pathway cross-talk network. Furthermore, the upregulated gene GADD45B was associated with three of the pathways, including an activated pathway ('MAPK signaling pathway') and two repressed pathways ('cell cycle' and 'P53 pathway'). Western blotting demonstrated that the expression of NF-κB, Akt and GADD45B increased over time in lung cells treated with benzopyrene, whereas the expression levels of cyclin B and P53 decreased. In conclusion, GADD45B may contribute to lung carcinogenesis via affecting the MAPK, P53 signaling and cell cycle pathways.


SRSF10-mediated IL1RAP alternative splicing regulates cervical cancer oncogenesis via mIL1RAP-NF-κB-CD47 axis.

  • Fei Liu‎ et al.
  • Oncogene‎
  • 2018‎

High-risk human papillomavirus oncoproteins E6 and E7 are the major etiological factors of cervical cancer but are insufficient for malignant transformation of cervical cancer. Dysregulated alternative splicing, mainly ascribed to aberrant splicing factor levels and activities, contributes to most cancer hallmarks. However, do E6 and E7 regulate the expression of splicing factors? Does alternative splicing acts as an "accomplice" of E6E7 to promote cervical cancer progression? Here, we identified that the splicing factor SRSF10, which promotes tumorigenesis of cervix, was upregulated by E6E7 via E2F1 transcriptional activation. SRSF10 modulates the alternate terminator of interleukin-1 receptor accessory protein exon 13 to increase production of the membrane form of interleukin-1 receptor accessory protein. SRSF10-mediated mIL1RAP upregulates the expression of the "don't eat me" signal CD47 to inhibit macrophage phagocytosis by promoting nuclear factor-κB activation, which is pivotal in inflammatory, immune, and tumorigenesis processes. Altogether, these data reveal a close relationship among HPV infection, alternative splicing and tumor immune evasion, and also suggests that the SRSF10-mIL1RAP-CD47 axis could be an attractive therapeutic target for the treatment of cervical cancer.


Nephroprotective mechanisms of Rhizoma Chuanxiong and Radix et Rhizoma Rhei against acute renal injury and renal fibrosis based on network pharmacology and experimental validation.

  • Jun Li‎ et al.
  • Frontiers in pharmacology‎
  • 2023‎

The molecular mechanisms of Rhizoma Chuanxiong (Chuanxiong, CX) and Rhei Radix et Rhizoma (Dahuang, DH) in treating acute kidney injury (AKI) and subsequent renal fibrosis (RF) were investigated in this study by applying network pharmacology and experimental validation. The results showed that aloe-emodin, (-)-catechin, beta-sitosterol, and folic acid were the core active ingredients, and TP53, AKT1, CSF1R, and TGFBR1 were the core target genes. Enrichment analyses showed that the key signaling pathways were the MAPK and IL-17 signaling pathways. In vivo experiments confirmed that Chuanxiong and Dahuang pretreatments significantly inhibited the levels of SCr, BUN, UNAG, and UGGT in contrast media-induced acute kidney injury (CIAKI) rats (p < 0.001). The results of Western blotting showed that compared with the control group, the protein levels of p-p38/p38 MAPK, p53, and Bax in the contrast media-induced acute kidney injury group were significantly increased, and the levels of Bcl-2 were significantly reduced (p < 0.001). Chuanxiong and Dahuang interventions significantly reversed the expression levels of these proteins (p < 0.01). The localization and quantification of p-p53 expression in immunohistochemistry technology also support the aforementioned results. In conclusion, our data also suggest that Chuanxiong and Dahuang may inhibit tubular epithelial cell apoptosis and improve acute kidney injury and renal fibrosis by inhibiting p38 MAPK/p53 signaling.


The Molecular Mechanism Underlying Pro-apoptotic Role of Hemocytes Specific Transcriptional Factor Lhx9 in Crassostrea hongkongensis.

  • Yingli Zhou‎ et al.
  • Frontiers in physiology‎
  • 2018‎

Hemocytes are the central organ of immune defense against pathogens by means of inflammation, phagocytosis, and encapsulation in mollusks. The well-functioning of the host immune system relies on the hemocytes' task exertion and frequent renewal, but the underlying renewal mechanism remains elusive at the gene level. Here, we identified one transcription factor, LIM homeobox 9, in Crassostrea hongkongensis (ChLhx9) that could be involved in hemocyte apoptosis or renewal. ChLhx9 contains a homeodomain and two LIM domains. The expression profile of ChLhx9 showed that it was specific and had high expression in hemocytes, and it significantly increased under the bacterial challenge. RNA interference of ChLhx9 dramatically decreased the apoptosis rate of hemocytes when compared with a control group, which strongly implies its pro-apoptotic role in hemocytes. Furthermore, the genomic responses to the knockdown of ChLhx9 were examined through RNA-seq, which showed that multiple pathways associated with cell apoptosis, including the apoptosis pathway, hippo signal pathway and p53 signaling pathway, were significantly down-regulated. Meanwhile, seven of the key apoptotic genes were confirmed to be upregulated by ChLhx9, among which ChASPP1 (apoptosis stimulating protein of p53) was confirmed to induce hemocyte apoptosis strongly, which demonstrates that ChASPP1 was a downstream target mediated by ChLhx9 that caused apoptosis. In conclusion, tissue-specific transcription factor ChLhx9 induces hemocyte apoptosis through activating apoptotic genes or pathways, which could contribute to hemocyte renewal and immune defense in oysters.


Elabela inhibits TRAF1/NF-κB induced oxidative DNA damage to promote diabetic foot ulcer wound healing.

  • Yinghui Hong‎ et al.
  • iScience‎
  • 2023‎

Diabetic foot ulcer (DFU) is a serious complication of diabetes. Elabela (ELA), a ligand of apelin receptor (APJ), was shown to promote angiogenesis and suppress inflammation. This study aimed to illustrate the role of ELA in DFU wound healing. A whole-skin defect model was constructed using db/m and db/db mice to observe the effects of ELA on wound healing. The function of ELA in endothelial cells cultured in high glucose medium was investigated. Administration of ELA in peri-wound area of db/db mice accelerated wound closure and reduced inflammatory infiltration. Indicators of DNA damage, elevated reactive oxygen species (ROS) levels and tail DNA amounts, were downregulated by ELA but compromised after TRAF1 overexpression. ELA-mediated inhibition of NF-κB phosphorylation improved cell migration and angiogenesis, which were blocked by APJ silencing. The findings imply that ELA suppresses TRAF1-mediated NF-κB signal activation, reducing ROS-related oxidative DNA damage and improving protection of endothelial function.


Transcriptome profiling reveals the role of ZBTB38 knock-down in human neuroblastoma.

  • Jie Chen‎ et al.
  • PeerJ‎
  • 2019‎

ZBTB38 belongs to the zinc finger protein family and contains the typical BTB domains. As a transcription factor, ZBTB38 is involved in cell regulation, proliferation and apoptosis, whereas, functional deficiency of ZBTB38 induces the human neuroblastoma (NB) cell death potentially. To have some insight into the role of ZBTB38 in NB development, high throughput RNA sequencing was performed using the human NB cell line SH-SY5Y with the deletion of ZBTB38. In the present study, 2,438 differentially expressed genes (DEGs) in ZBTB38-/- SH-SY5Y cells were obtained, 83.5% of which was down-regulated. Functional annotation of the DEGs in the Kyoto Encyclopedia of Genes and Genomes database revealed that most of the identified genes were enriched in the neurotrophin TRK receptor signaling pathway, including PI3K/Akt and MAPK signaling pathway. we also observed that ZBTB38 affects expression of CDK4/6, Cyclin E, MDM2, ATM, ATR, PTEN, Gadd45, and PIGs in the p53 signaling pathway. In addition, ZBTB38 knockdown significantly suppresses the expression of autophagy-related key genes including PIK3C2A and RB1CC1. The present meeting provides evidence to molecular mechanism of ZBTB38 modulating NB development and targeted anti-tumor therapies.


RNA adenosine modifications related to prognosis and immune infiltration in osteosarcoma.

  • Shijie Chen‎ et al.
  • Journal of translational medicine‎
  • 2022‎

RNA adenosine modifications, which are primarily mediated by "writer" enzymes (RMWs), play a key role in epigenetic regulation in various biological processes, including tumorigenesis. However, the expression and prognostic role of these genes in osteosarcoma (OS) remain unclear.


lncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence.

  • Lijun Zhao‎ et al.
  • Aging‎
  • 2019‎

Hepatocellular carcinoma (HCC) is a leading cause of cancer related deaths and lacks effective therapies. Cellular senescence acts as a barrier against cancer progression and plays an important role in tumor suppression. Senescence associated long noncoding RNAs (SAL-RNAs) are thought to be critical regulators of cancer development. Here, the long noncoding RNA (lncRNA) myocardial infarction-associated transcript (miat) was first identified as an HCC specific SALncRNA. Knockdown of miat significantly promoted cellular senescence and inhibited HCC progression. Mechanistic study revealed that SAL-miat acted as a competitive endogenous RNA (ceRNA) that upregulated the expression of sirt1 by sponging miR-22-3p. Moreover, miat downregulation activated the tumor suppressor pathway (p53/p21 and p16/pRb) and stimulated senescent cancer cells to secrete senescence-associated secretory phenotype (SASP), which contributed to inhibition of tumor cell proliferation, and resulted in the suppression of HCC tumorigenesis. Together, our study provided mechanistic insights into a critical role of miat as a miRNA sponge in HCC cellular senescence, which might offer a potential therapeutic strategy for HCC treatment.


Conditional knockout of TGF-βRII /Smad2 signals protects against acute renal injury by alleviating cell necroptosis, apoptosis and inflammation.

  • Qin Yang‎ et al.
  • Theranostics‎
  • 2019‎

Rationale: TGF-β/Smad signaling is the central mediator for renal fibrosis, however, its functional role in acute kidney injury (AKI) is not fully understood. We previously showed Smad2 protects against renal fibrosis by limiting Smad3 signaling, but details on its role in acute phase are unclear. Recent evidence showed that TGF-β/Smad3 may be involved in the pathogenesis of AKI, so we hypothesized that Smad2 may play certain roles in AKI due to its potential effect on programmed cell death. Methods: We established a cisplatin-induced AKI mouse model with TGF-β type II receptor or Smad2 specifically deleted from renal tubular epithelial cells (TECs). We also created stable in vitro models with either Smad2 knockdown or overexpression in human HK2 cells. Importantly, we evaluated whether Smad2 could serve as a therapeutic target in both cisplatin- and ischemic/reperfusion (I/R)-induced AKI mouse models by silencing Smad2 in vivo. Results: Results show that disruption of TGF-β type II receptor suppressed Smad2/3 activation and attenuated renal injury in cisplatin nephropathy. Furthermore, we found that conditional knockout of downstream Smad2 in TECs protected against loss of renal function, and alleviated p53-mediated cell apoptosis, RIPK-mediated necroptosis and p65 NF-κB-driven renal inflammation in cisplatin nephropathy. This was further confirmed in cisplatin-treated Smad2 knockdown and overexpression HK2 cells. Additionally, lentivirus-mediated Smad2 knockdown protected against renal injury and inflammation while restoring renal function in established nephrotoxic and ischemic AKI models. Conclusions: These findings show that unlike its protective role in renal fibrosis, Smad2 promoted AKI by inducing programmed cell death and inflammation. This may offer a novel therapeutic target for acute kidney injury.


Comprehensive assessment of computational algorithms in predicting cancer driver mutations.

  • Hu Chen‎ et al.
  • Genome biology‎
  • 2020‎

The initiation and subsequent evolution of cancer are largely driven by a relatively small number of somatic mutations with critical functional impacts, so-called driver mutations. Identifying driver mutations in a patient's tumor cells is a central task in the era of precision cancer medicine. Over the decade, many computational algorithms have been developed to predict the effects of missense single-nucleotide variants, and they are frequently employed to prioritize mutation candidates. These algorithms employ diverse molecular features to build predictive models, and while some algorithms are cancer-specific, others are not. However, the relative performance of these algorithms has not been rigorously assessed.


Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage.

  • Emma Bolderson‎ et al.
  • Nature communications‎
  • 2019‎

The DNA repair capacity of human cells declines with age, in a process that is not clearly understood. Mutation of the nuclear envelope protein barrier-to-autointegration factor 1 (Banf1) has previously been shown to cause a human progeroid disorder, Néstor-Guillermo progeria syndrome (NGPS). The underlying links between Banf1, DNA repair and the ageing process are unknown. Here, we report that Banf1 controls the DNA damage response to oxidative stress via regulation of poly [ADP-ribose] polymerase 1 (PARP1). Specifically, oxidative lesions promote direct binding of Banf1 to PARP1, a critical NAD+-dependent DNA repair protein, leading to inhibition of PARP1 auto-ADP-ribosylation and defective repair of oxidative lesions, in cells with increased Banf1. Consistent with this, cells from patients with NGPS have defective PARP1 activity and impaired repair of oxidative lesions. These data support a model whereby Banf1 is crucial to reset oxidative-stress-induced PARP1 activity. Together, these data offer insight into Banf1-regulated, PARP1-directed repair of oxidative lesions.


Expression and functional analysis of the BCL2-Associated agonist of cell death (BAD) gene in grass carp (Ctenopharyngodon idella) during bacterial infection.

  • Zhijie Lu‎ et al.
  • Developmental and comparative immunology‎
  • 2021‎

The BCL2-associated agonist of cell death protein is a key participant in apoptosis dependent on mitochondria and in disease progression that involves the regulation of cell death, such as tumorigenesis, diabetes, sepsis shock, and epilepsy. Nevertheless, the mechanisms underlying the immune responses to teleost BAD bacterial infection and mitochondrial-dependent apoptosis remains unclear. In order to elucidate the mechanisms involved, in this study, a Ctenopharyngodon idella (grass carp) BAD gene named GcBAD1 was firstly cloned and characterized. The results indicated that the ORF (open reading frame) of GcBAD1 was 438 bp in length, encoding a 145-amino acid putative protein of 16.66 kDa. This deduced amino acid sequence has a better identity than another teleost species according to a phylogenetic analysis, and contains a Bcl2-BAD-1 domain. In healthy grass carp fish, the mRNA transcripts of GcBAD1 were widely present in the studied tissues, which could be ranked as follows; spleen > brain > middle-kidney > head-kidney > liver > gills > intestines > heart and muscle. In addition, during infection by Aeromonas hydrophila and Staphylococcus aureus, the mRNA transcription and protein levels expression of GcBAD1 in the head-kidney, spleen, and liver tissues of the fish were significantly up-regulated. Moreover, when the C. idellus kidney cell line (CIK) cells were incubated with Lipopolysaccharide (LPS) and lipoteichoic acid (LTA), the GcBAD1 expression transcripts were also significantly up-regulated. Additionally, overexpression of GcBAD1 in CIK cells was able to activate apoptosis-related genes, including those encoding p53, Cytochrome C (CytoC), caspase-3, and caspase-9. Besides, in the TUNEL assays, when pEGFP-BAD1 was over-expressed, the number of red signals associated with apoptosis were significantly increased in the CIK cells infected with LPS or LTA at 12 h. This study demonstrates that GcBAD1 has a significant role in the mitochondrial apoptosis pathway of grass carp's innate immunity. Our findings provide new insight into the potential mechanisms of teleost antibacterial immunity.


Systematic Functional Annotation of Somatic Mutations in Cancer.

  • Patrick Kwok-Shing Ng‎ et al.
  • Cancer cell‎
  • 2018‎

The functional impact of the vast majority of cancer somatic mutations remains unknown, representing a critical knowledge gap for implementing precision oncology. Here, we report the development of a moderate-throughput functional genomic platform consisting of efficient mutant generation, sensitive viability assays using two growth factor-dependent cell models, and functional proteomic profiling of signaling effects for select aberrations. We apply the platform to annotate >1,000 genomic aberrations, including gene amplifications, point mutations, indels, and gene fusions, potentially doubling the number of driver mutations characterized in clinically actionable genes. Further, the platform is sufficiently sensitive to identify weak drivers. Our data are accessible through a user-friendly, public data portal. Our study will facilitate biomarker discovery, prediction algorithm improvement, and drug development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: