2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,955 papers

FOS Rescues Neuronal Differentiation of Sox2-Deleted Neural Stem Cells by Genome-Wide Regulation of Common SOX2 and AP1(FOS-JUN) Target Genes.

  • Miriam Pagin‎ et al.
  • Cells‎
  • 2021‎

The transcription factor SOX2 is important for brain development and for neural stem cells (NSC) maintenance. Sox2-deleted (Sox2-del) NSC from neonatal mouse brain are lost after few passages in culture. Two highly expressed genes, Fos and Socs3, are strongly downregulated in Sox2-del NSC; we previously showed that Fos or Socs3 overexpression by lentiviral transduction fully rescues NSC's long-term maintenance in culture. Sox2-del NSC are severely defective in neuronal production when induced to differentiate. NSC rescued by Sox2 reintroduction correctly differentiate into neurons. Similarly, Fos transduction rescues normal or even increased numbers of immature neurons expressing beta-tubulinIII, but not more differentiated markers (MAP2). Additionally, many cells with both beta-tubulinIII and GFAP expression appear, indicating that FOS stimulates the initial differentiation of a "mixed" neuronal/glial progenitor. The unexpected rescue by FOS suggested that FOS, a SOX2 transcriptional target, might act on neuronal genes, together with SOX2. CUT&RUN analysis to detect genome-wide binding of SOX2, FOS, and JUN (the AP1 complex) revealed that a high proportion of genes expressed in NSC are bound by both SOX2 and AP1. Downregulated genes in Sox2-del NSC are highly enriched in genes that are also expressed in neurons, and a high proportion of the "neuronal" genes are bound by both SOX2 and AP1.


Do We Use Methylation of NFATC1 and FOS Genes As a Biomarker for Postmenopausal Osteoporosis?

  • R Kalkan‎ et al.
  • Balkan journal of medical genetics : BJMG‎
  • 2020‎

Genetic and epigenetic factors have an important role during the development of osteoporosis. Receptor activator of nuclear factor-κ B (NF-κB) (RANK)/receptor activator of NF-κB ligand (RANKL) pathway is important for the bone remodeling, and NFATC1 and FOS are the downtargets of this pathway. Here, we report methylation status of NFATC1 and FOS genes in post- and premenopausal women. In this study, 30 premenopausal and 35 postmenopausal women were included. Methylation sensitive-high resolution melting (MS-HRM) analysis was used for identification of NFATC1 and FOS genes methylation. The NFATC1 gene was methylated in 11 of the 35 postmenopausal women, and the FOS gene was methylated in six of the postmenopausal women (p >0.005). Here, we found statistically significant association between unmethylation of the NFATC1 gene and postmenopausal status. This result explains the epigenetic regulation of osteoclasts during the menopausal transition, and for the first time, our results can be used for epigenetic explanation of postmenopausal osteoporosis in the literature. However, the limited number of studies in this field makes our results crucial. Our results showed great value of epigenetic profiles of postmenopausal women.


RALY regulate the proliferation and expression of immune/inflammatory response genes via alternative splicing of FOS.

  • Zhao Liang‎ et al.
  • Genes and immunity‎
  • 2022‎

RALY is a multifunctional RNA-binding protein involved in cancer metastasis, prognosis, and chemotherapy resistance in various cancers. However, the molecular mechanism of which is still unclear. We have established RALY overexpression cell lines and studied the effect of RALY on proliferation and apoptosis in HeLa cells. Then we used RNA-seq to analyze the transcriptomes data. Lastly, RT-qPCR experiments had performed to confirm the RNA-seq results. We found that the overexpression of RALY in HeLa cells inhibited proliferation. Moreover, the overexpression of RALY changed the gene expression profile, and the significant upregulation of genes involved immune/inflammatory response related biological process by NOD-like receptor signaling pathway cytokine-cytokine receptor interaction. The significant downregulation genes involved innate immune response by the Primary immunodeficiency pathway. Notably, IFIT1, IFIT2, IFTI3, IFI44, HERC4, and OASL expression had inhibited by the overexpression of RALY. Furthermore, RALY negatively regulates the expression of transcription factors FOS and FOSB. Notably, we found that 645 alternative splicing events had regulated by overexpression of RALY, which is highly enriched in transcription regulation, RNA splicing, and cell proliferation biological process by the metabolic pathway. We show that RALY regulates the expression of immune/inflammatory response-related genes via alternative splicing of FOS in HeLa cells. The novel role of RALY in regulating immune/inflammatory gene expression may explain its function in regulating chemotherapy resistance and provides novel insights into further exploring the molecular mechanism of RALY in regulating cancer immunity and chemo/immune therapies.


Interleukin-6 regulates expression of Fos and Jun genes to affect the development of mouse preimplantation embryos.

  • Chunhua Yu‎ et al.
  • The journal of obstetrics and gynaecology research‎
  • 2018‎

We investigated whether recombinant mouse interleukin-6 (IL-6) affects the development of preimplantation embryos and induces the -signal transducers and activators of transcription (JAK-STAT) signaling pathway by binding IL-6 signal transducer (IL-6st) and regulating Fos and Jun gene expression, thereby accounting for the negative effect of superovulation on embryo development.


c-Jun/c-Fos heterodimers regulate cellular genes via a newly identified class of methylated DNA sequence motifs.

  • Montse Gustems‎ et al.
  • Nucleic acids research‎
  • 2014‎

CpG methylation in mammalian DNA is known to interfere with gene expression by inhibiting the binding of transactivators to their cognate sequence motifs or recruiting proteins involved in gene repression. An Epstein-Barr virus-encoded transcription factor, Zta, was the first example of a sequence-specific transcription factor that preferentially recognizes and selectively binds DNA sequence motifs with methylated CpG residues, reverses epigenetic silencing and activates gene transcription. The DNA binding domain of Zta is homologous to c-Fos, a member of the cellular AP-1 (activator protein 1) transcription factor family, which regulates cell proliferation and survival, apoptosis, transformation and oncogenesis. We have identified a novel AP-1 binding site termed meAP-1, which contains a CpG dinucleotide. If methylated, meAP-1 sites are preferentially bound by the AP-1 heterodimer c-Jun/c-Fos in vitro and in cellular chromatin in vivo. In activated human primary B cells, c-Jun/c-Fos locates to these methylated elements in promoter regions of transcriptionally activated genes. Reminiscent of the viral Zta protein, c-Jun/c-Fos is the first identified cellular member of the AP-1 family of transactivators that can induce expression of genes with methylated, hence repressed promoters, reversing epigenetic silencing.


Fos Facilitates Gallid Alpha-Herpesvirus 1 Infection by Transcriptional Control of Host Metabolic Genes and Viral Immediate Early Gene.

  • Zhitao Wang‎ et al.
  • Viruses‎
  • 2021‎

Gallid alpha-herpesvirus 1, also known as avian infectious laryngotracheitis virus (ILTV), continues to cause huge economic losses to the poultry industry worldwide. Similar to that of other herpesvirus-encoded proteins, the expression of viral genes encoded by ILTV is regulated by a cascade, and the underlying regulatory mechanism remains largely unclear. The viral immediate-early (IE) gene ICP4 plays a prominent role in the initiation of the transcription of early and late genes during ILTV replication. In this study, we identified AP-1 as the key regulator of the transcription of ILTV genes by bioinformatics analysis of genome-wide transcriptome data. Subsequent functional studies of the key members of the AP-1 family revealed that Fos, but not Jun, regulates ILTV infection through AP-1 since knockdown of Fos, but not Jun, by gene silencing significantly reduced ICP4 transcription and subsequent viral genome replication and virion production. Using several approaches, we identified ICP4 as a bona fide target gene of Fos that regulated Fos and has Fos response elements within its promoter. Neither the physical binding of Jun to the promoter of ICP4 nor the transcriptional activity of Jun was observed. In addition, knockdown of Fos reduced the transcription of MDH1 and ATP5A1, genes encoding two host rate-limiting enzymes essential for the production of the TCA intermediates OAA and ATP. The biological significance of the transcriptional regulation of MDH1 and ATP5A1 by Fos in ILTV infection was supported by the fact that anaplerosis of OAA and ATP rescued both ICP4 transcription and virion production in infected cells under when Fos was silenced. Our study identified the transcription factor Fos as a key regulator of ILTV infection through its transcription factor function on both the virus and host sides, improving the current understanding of both avian herpesvirus-host interactions and the roles of AP-1 in viral infection.


The Caenorhabditis elegans JNK signaling pathway activates expression of stress response genes by derepressing the Fos/HDAC repressor complex.

  • Ayuna Hattori‎ et al.
  • PLoS genetics‎
  • 2013‎

MAP kinases are integral to the mechanisms by which cells respond to a wide variety of environmental stresses. In Caenorhabditis elegans, the KGB-1 JNK signaling pathway regulates the response to heavy metal stress. In this study, we identified FOS-1, a bZIP transcription factor, as a target of KGB-1-mediated phosphorylation. We further identified two transcriptional targets of the KGB-1 pathway, kreg-1 and kreg-2/lys-3, which are required for the defense against heavy metal stress. FOS-1 plays a critical role in the transcriptional repression of the kreg-1 gene by recruiting histone deacetylase (HDAC) to its promoter. KGB-1 phosphorylation prevents FOS-1 dimerization and promoter binding, resulting in promoter derepression. Thus, HDAC behaves as a co-repressor modulating FOS-1-mediated transcriptional regulation. This study describes the direct link from JNK signaling, Fos phosphorylation, and regulation of kreg gene transcription, which modulates the stress response in C. elegans.


HSF1 Can Prevent Inflammation following Heat Shock by Inhibiting the Excessive Activation of the ATF3 and JUN&FOS Genes.

  • Patryk Janus‎ et al.
  • Cells‎
  • 2022‎

Heat Shock Factor 1 (HSF1), a transcription factor frequently overexpressed in cancer, is activated by proteotoxic agents and participates in the regulation of cellular stress response. To investigate how HSF1 level affects the response to proteotoxic stress, we integrated data from functional genomics analyses performed in MCF7 breast adenocarcinoma cells. Although the general transcriptional response to heat shock was impaired due to HSF1 deficiency (mainly chaperone expression was inhibited), a set of genes was identified, including ATF3 and certain FOS and JUN family members, whose stress-induced activation was stronger and persisted longer than in cells with normal HSF1 levels. These genes were direct HSF1 targets, suggesting a dual (activatory/suppressory) role for HSF1. Moreover, we found that heat shock-induced inflammatory response could be stronger in HSF1-deficient cells. Analyses of The Cancer Genome Atlas data indicated that higher ATF3, FOS, and FOSB expression levels correlated with low HSF1 levels in estrogen receptor-positive breast cancer, reflecting higher heat shock-induced expression of these genes in HSF1-deficient MCF7 cells observed in vitro. However, differences between the analyzed cancer types were noted in the regulation of HSF1-dependent genes, indicating the presence of cell-type-specific mechanisms. Nevertheless, our data indicate the existence of the heat shock-induced network of transcription factors (associated with the activation of TNFα signaling) which includes HSF1. Independent of its chaperone-mediated cytoprotective function, HSF1 may be involved in the regulation of this network but prevents its overactivation in some cells during stress.


Spatial exploration induced expression of immediate early genes Fos and Zif268 in adult-born neurons Is reduced after pentylenetetrazole kindling.

  • Alena Kalinina‎ et al.
  • Brain research bulletin‎
  • 2019‎

Seizure activity stimulates adult neurogenesis, the birth of new neurons, in the hippocampus. Many new neurons that develop in the presence of repeatedly induced seizures acquire abnormal morphological and functional characteristics that can promote network hyperexcitability and hippocampal dysfunction. However, the impact of seizure induced neurogenesis on behaviour remains poorly understood. In this study, we investigated whether adult-born neurons generated immediately before and during chronic seizures were capable of integration into behaviorally relevant hippocampal networks. Adult rats underwent pentylenetetrazole (PTZ) kindling for either 1 or 2 weeks. Proliferating cells were labelled with BrdU immediately before kindling commenced. Twenty-four hours after receiving their last kindling treatment, rats were placed in a novel environment and allowed to freely explore for 30 min. The rats were euthanized 90 min later to examine for behaviourally-induced immediate early gene expression (c-fos, Zif268). Using this approach, we found that PTZ kindled rats did not differ from control rats in regards to exploratory behaviour, but there was a marked attenuation in behaviour-induced expression of Fos and Zif268 for rats that received 2 weeks of PTZ kindling. Further examination revealed that PTZ kindled rats showed reduced colocalization of Fos and Zif268 in 2.5 week old BrdU + cells. The proportion of immature granule cells (doublecortin-positive) expressing behaviorally induced Zif268 was also significantly lower for PTZ kindled rats than control rats. These results suggest that chronic seizures can potentially disrupt the ability of adult-born cells to functionally integrate into hippocampal circuits important for the processing of spatial information.


Medial prefrontal cortical injections of c-fos antisense oligonucleotides transiently lower c-Fos protein and mimic amphetamine withdrawal behaviours.

  • A M Persico‎ et al.
  • Neuroscience‎
  • 1998‎

Prefrontal cerebral cortical areas display decreased expression of several transcription factor/immediate-early genes, including c-fos, during amphetamine withdrawal. Antisense strategies can help to test possible roles for this prefrontal c-fos down-regulation in the behavioural correlates of amphetamine withdrawal. Medial prefrontal cortical injections delivering 1.7 nmoles of anti c-fos oligonucleotides revealed an approximately 3 h half-life for phosphothioate and a 15 min half-life for phosphodiester oligonucleotides. Antisense phosphothioates complementary to the c-fos translational start site reduced levels of c-Fos protein, while exerting modest and variable effects on c-fos messenger RNA levels. Neither missense phosphorothioate nor antisense phosphodiester oligonucleotides significantly reduced levels of either c-fos messenger RNA or protein. Animals injected with anti c-fos phosphothioate oligonucleotides into the medial prefrontal cortex displayed marked reductions in linear locomotor activity and repetitive movements measured in a novel environment, effects not seen when missense oligonucleotides were used or when animals were accustomed to the activity monitor prior to antisense oligonucleotide injection. Behavioural changes produced by prefrontal cortical injections of c-fos antisense oligonucleotides closely mimic alterations recorded during amphetamine withdrawal. Prefrontal c-fos could thus conceivably play roles in the neurobiological underpinnings of psychostimulant withdrawal and of responses to stressors such as exposure to novel environments.


Transcription factors modulate c-Fos transcriptional bursts.

  • Adrien Senecal‎ et al.
  • Cell reports‎
  • 2014‎

Transcription is a stochastic process occurring mostly in episodic bursts. Although the local chromatin environment is known to influence the bursting behavior on long timescales, the impact of transcription factors (TFs)--especially in rapidly inducible systems--is largely unknown. Using fluorescence in situ hybridization and computational models, we quantified the transcriptional activity of the proto-oncogene c-Fos with single mRNA accuracy at individual endogenous alleles. We showed that, during MAPK induction, the TF concentration modulates the burst frequency of c-Fos, whereas other bursting parameters remain mostly unchanged. By using synthetic TFs with TALE DNA-binding domains, we systematically altered different aspects of these bursts. Specifically, we linked the polymerase initiation frequency to the strength of the transactivation domain and the burst duration to the TF lifetime on the promoter. Our results show how TFs and promoter binding domains collectively act to regulate different bursting parameters, offering a vast, evolutionarily tunable regulatory range for individual genes.


Interaction between the serotoninergic and dopaminergic systems in d-fenfluramine-induced activation of c-fos and jun B genes in rat striatal neurons.

  • A M Gardier‎ et al.
  • Journal of neurochemistry‎
  • 2000‎

To test for the relative contributions of the dopaminergic and serotoninergic systems in the striatum to the effects of d-fenfluramine, an indirect serotonin receptor agonist, we assessed the expression of Fos/Jun proteins induced by d-fenfluramine given alone or in the presence of dopaminergic or serotoninergic agents. To determine the neuronal targets of d-fenfluramine in the striatum, we identified the phenotypes of striatal neurons in which d-fenfluramine induced Fos expression. Our results demonstrated that d-fenfluramine evokes nuclear expression of Fos/Jun B proteins in the striatum, and that the Fos expression was dose-dependent and accompanied by transient induction of c-fos mRNA. Fos expression was blocked by p-chloroamphetamine, a serotoninergic neurotoxin. Pretreatment with SCH 23390, a D1-dopamine receptor antagonist, led to a marked decrease in Fos/Jun B expression in the caudoputamen, but not in the cortex, whereas pretreatment with methiothepin, a nonselective serotonin 5-HT1 receptor antagonist, blocked Fos expression completely in the cortex and only partially in the caudoputamen. The expression of Fos/Jun B in the striatum occurred mainly in dynorphin-containing neurons and in a subpopulation of striatal interneurons that exhibited NADPH-diaphorase activity. Most of the enkephalin-containing neurons of the striatum did not show Fos/Jun B staining. These results suggest that the mechanism by which d-fenfluramine induces c-fos and jun B expression in the rat caudoputamen depends at least in part on activation of the dopaminergic system by serotonin.


Liver carcinogenesis by FOS-dependent inflammation and cholesterol dysregulation.

  • Latifa Bakiri‎ et al.
  • The Journal of experimental medicine‎
  • 2017‎

Human hepatocellular carcinomas (HCCs), which arise on a background of chronic liver damage and inflammation, express c-Fos, a component of the AP-1 transcription factor. Using mouse models, we show that hepatocyte-specific deletion of c-Fos protects against diethylnitrosamine (DEN)-induced HCCs, whereas liver-specific c-Fos expression leads to reversible premalignant hepatocyte transformation and enhanced DEN-carcinogenesis. c-Fos-expressing livers display necrotic foci, immune cell infiltration, and altered hepatocyte morphology. Furthermore, increased proliferation, dedifferentiation, activation of the DNA damage response, and gene signatures of aggressive HCCs are observed. Mechanistically, c-Fos decreases expression and activity of the nuclear receptor LXRα, leading to increased hepatic cholesterol and accumulation of toxic oxysterols and bile acids. The phenotypic consequences of c-Fos expression are partially ameliorated by the anti-inflammatory drug sulindac and largely prevented by statin treatment. An inverse correlation between c-FOS and the LXRα pathway was also observed in human HCC cell lines and datasets. These findings provide a novel link between chronic inflammation and metabolic pathways important in liver cancer.


Inflammation-mediated skin tumorigenesis induced by epidermal c-Fos.

  • Eva M Briso‎ et al.
  • Genes & development‎
  • 2013‎

Skin squamous cell carcinomas (SCCs) are the second most prevalent skin cancers. Chronic skin inflammation has been associated with the development of SCCs, but the contribution of skin inflammation to SCC development remains largely unknown. In this study, we demonstrate that inducible expression of c-fos in the epidermis of adult mice is sufficient to promote inflammation-mediated epidermal hyperplasia, leading to the development of preneoplastic lesions. Interestingly, c-Fos transcriptionally controls mmp10 and s100a7a15 expression in keratinocytes, subsequently leading to CD4 T-cell recruitment to the skin, thereby promoting epidermal hyperplasia that is likely induced by CD4 T-cell-derived IL-22. Combining inducible c-fos expression in the epidermis with a single dose of the carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) leads to the development of highly invasive SCCs, which are prevented by using the anti-inflammatory drug sulindac. Moreover, human SCCs display a correlation between c-FOS expression and elevated levels of MMP10 and S100A15 proteins as well as CD4 T-cell infiltration. Our studies demonstrate a bidirectional cross-talk between premalignant keratinocytes and infiltrating CD4 T cells in SCC development. Therefore, targeting inflammation along with the newly identified targets, such as MMP10 and S100A15, represents promising therapeutic strategies to treat SCCs.


miR-146a targets Fos expression in human cardiac cells.

  • Xavier Palomer‎ et al.
  • Disease models & mechanisms‎
  • 2015‎

miR-146a is a microRNA whose transcript levels are induced in the heart upon activation of NF-κB, a transcription factor induced by pro-inflammatory molecules (such as TNF-α) that is strongly related to the pathogenesis of cardiac disorders. The main goal of this study consisted of studying new roles of miR-146a in cardiac pathological processes caused by the pro-inflammatory cytokine TNF-α. Our results demonstrate that miR-146a transcript levels were sharply increased in cardiac ventricular tissue of transgenic mice with specific overexpression of TNF-α in the heart, and also in a cardiomyocyte cell line of human origin (AC16) exposed to TNF-α. Among all the in silico predicted miR-146a target genes, Fos mRNA and protein levels notably decreased after TNF-α treatment or miR-146a overexpression. These changes correlated with a diminution in the DNA-binding activity of AP-1, the Fos-containing transcription factor complex. Interestingly, AP-1 inhibition was accompanied by a reduction in matrix metalloproteinase (MMP)-9 mRNA levels in human cardiac cells. The specific regulation of this MMP by miR-146a was further confirmed at the secretion and enzymatic activity levels, as well as after anti-miR-mediated miR-146a inhibition. The results reported here demonstrate that Fos is a direct target of miR-146a activity and that downregulation of the Fos-AP-1 pathway by miR-146a has the capacity to inhibit MMP-9 activity. Given that MMP-9 is an AP-1 target gene involved in cardiac remodeling, myocardial dysfunction and progression of heart failure, these findings suggest that miR-146a might be a new and promising therapeutic tool for treating cardiac disorders associated with enhanced inflammation in the heart.


Bidirectional perisomatic inhibitory plasticity of a Fos neuronal network.

  • Ee-Lynn Yap‎ et al.
  • Nature‎
  • 2021‎

Behavioural experiences activate the FOS transcription factor in sparse populations of neurons that are critical for encoding and recalling specific events1-3. However, there is limited understanding of the mechanisms by which experience drives circuit reorganization to establish a network of Fos-activated cells. It is also not known whether FOS is required in this process beyond serving as a marker of recent neural activity and, if so, which of its many gene targets underlie circuit reorganization. Here we demonstrate that when mice engage in spatial exploration of novel environments, perisomatic inhibition of Fos-activated hippocampal CA1 pyramidal neurons by parvalbumin-expressing interneurons is enhanced, whereas perisomatic inhibition by cholecystokinin-expressing interneurons is weakened. This bidirectional modulation of inhibition is abolished when the function of the FOS transcription factor complex is disrupted. Single-cell RNA-sequencing, ribosome-associated mRNA profiling and chromatin analyses, combined with electrophysiology, reveal that FOS activates the transcription of Scg2, a gene that encodes multiple distinct neuropeptides, to coordinate these changes in inhibition. As parvalbumin- and cholecystokinin-expressing interneurons mediate distinct features of pyramidal cell activity4-6, the SCG2-dependent reorganization of inhibitory synaptic input might be predicted to affect network function in vivo. Consistent with this prediction, hippocampal gamma rhythms and pyramidal cell coupling to theta phase are significantly altered in the absence of Scg2. These findings reveal an instructive role for FOS and SCG2 in establishing a network of Fos-activated neurons via the rewiring of local inhibition to form a selectively modulated state. The opposing plasticity mechanisms acting on distinct inhibitory pathways may support the consolidation of memories over time.


The time course of systems consolidation of spatial memory from recent to remote retention: A comparison of the Immediate Early Genes Zif268, c-Fos and Arc.

  • Daniel N Barry‎ et al.
  • Neurobiology of learning and memory‎
  • 2016‎

Systems consolidation is a process involving the stabilisation of memory traces in the neocortex over time. The medial prefrontal cortex becomes increasingly important during the retrieval of older memories, however the timescale of its involvement is unclear, and the contribution of other neocortical brain regions to remote memory have received little attention. The Immediate Early Genes (IEGs) Zif268, c-Fos and Arc have been utilised as markers of neural activity during spatial memory retrieval, however the lack of a direct comparison between them hinders the interpretation of results. To address these questions, we examined the expression of Zif268, Arc and c-Fos protein in the medial prefrontal cortex, as well as the hippocampus, and the entorhinal, perirhinal, retrosplenial and parietal cortices of male Wistar rats following a probe trial of the Morris water maze either one day, seven days, 14 days or 30 days after acquisition. Activity of the medial prefrontal cortex during retrieval, as measured by all three IEGs, increased in correspondence with the age of the memory, reaching significance between 14 and 30 days. Similar increases in c-Fos and Arc were observed over the course of consolidation in other neocortical and parahippocampal areas, however this pattern was not observed with Zif268. Activity of the hippocampus remained largely unchanged across retention intervals. These findings suggest that systems consolidation of spatial memory takes at least two weeks, are consistent with an ongoing role for the hippocampus in the retrieval of spatial memory, and suggest that c-Fos and Arc may be a more sensitive measure of neural activity in response to behavioural tasks than Zif268.


MEF2C regulates osteoclastogenesis and pathologic bone resorption via c-FOS.

  • Takayuki Fujii‎ et al.
  • Bone research‎
  • 2021‎

Osteoporosis is a metabolic bone disease with dysregulated coupling between bone resorption and bone formation, which results in decreased bone mineral density. The MEF2C locus, which encodes the transcription factor MADS box transcription enhancer factor 2, polypeptide C (MEF2C), is strongly associated with adult osteoporosis and osteoporotic fractures. Although the role of MEF2C in bone and cartilage formation by osteoblasts, osteocytes, and chondrocytes has been studied, the role of MEF2C in osteoclasts, which mediate bone resorption, remains unclear. In this study, we identified MEF2C as a positive regulator of human and mouse osteoclast differentiation. While decreased MEF2C expression resulted in diminished osteoclastogenesis, ectopic expression of MEF2C enhanced osteoclast generation. Using transcriptomic and bioinformatic approaches, we found that MEF2C promotes the RANKL-mediated induction of the transcription factors c-FOS and NFATc1, which play a key role in osteoclastogenesis. Mechanistically, MEF2C binds to FOS regulatory regions to induce c-FOS expression, leading to the activation of NFATC1 and downstream osteoclastogenesis. Inducible deletion of Mef2c in mice resulted in increased bone mass under physiological conditions and protected mice from bone erosion by diminishing osteoclast formation in K/BxN serum induced arthritis, a murine model of inflammatory arthritis. Our findings reveal direct regulation of osteoclasts by MEF2C, thus adding osteoclasts as a cell type in which altered MEF2C expression or function can contribute to pathological bone remodeling.


c-FOS drives reversible basal to squamous cell carcinoma transition.

  • François Kuonen‎ et al.
  • Cell reports‎
  • 2021‎

While squamous transdifferentiation within subpopulations of adenocarcinomas represents an important drug resistance problem, its underlying mechanism remains poorly understood. Here, using surface markers of resistant basal cell carcinomas (BCCs) and patient single-cell and bulk transcriptomic data, we uncover the dynamic roadmap of basal to squamous cell carcinoma transition (BST). Experimentally induced BST identifies activator protein 1 (AP-1) family members in regulating tumor plasticity, and we show that c-FOS plays a central role in BST by regulating the accessibility of distinct AP-1 regulatory elements. Remarkably, despite prominent changes in cell morphology and BST marker expression, we show using inducible model systems that c-FOS-mediated BST demonstrates reversibility. Blocking EGFR pathway activation after c-FOS induction partially reverts BST in vitro and prevents BST features in both mouse models and human tumors. Thus, by identifying the molecular basis of BST, our work reveals a therapeutic opportunity targeting plasticity as a mechanism of tumor resistance.


Genetic Reporters of Neuronal Activity: c-Fos and G-CaMP6.

  • Andrew E Hudson‎
  • Methods in enzymology‎
  • 2018‎

The majority of 20th century investigations into anesthetic effects on the nervous system have used electrophysiology. Yet some fundamental limitations to electrophysiologic recordings, including the invasiveness of the technique, the need to place (potentially several) electrodes in every site of interest, and the difficulty of selectively recording from individual cell types, have driven the development of alternative methods for detecting neuronal activation. Two such alternative methods with cellular scale resolution have matured in the last few decades and will be reviewed here: the transcription of immediate early genes, foremost c-fos, and the influx of calcium into neurons as reported by genetically encoded calcium indicators, foremost GCaMP6. Reporters of c-fos allow detection of transcriptional activation even in deep or distant nuclei, without requiring the accurate targeting of multiple electrodes at long distances. The temporal resolution of c-fos is limited due to its dependence upon the detection of transcriptional activation through immunohistochemical assays, though the development of RT-PCR probes has shifted the temporal resolution of the assay when tissues of interest can be isolated. GCaMP6 has several isoforms that trade-off temporal resolution for signal to noise, but the fastest are capable of resolving individual action potential events, provided the microscope used scans quickly enough. GCaMP6 expression can be selectively targeted to neuronal populations of interest, and potentially thousands of neurons can be captured within a single frame, allowing the neuron-by-neuron reporting of circuit dynamics on a scale that is difficult to capture with electrophysiology, as long as the populations are optically accessible.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: