Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 31 papers

Gadd45a deficiency accelerates BCR-ABL driven chronic myelogenous leukemia.

  • Kaushiki Mukherjee‎ et al.
  • Oncotarget‎
  • 2017‎

The Gadd45a stress sensor gene is a member in the Gadd45 family of genes that includes Gadd45b & Gadd45g. To investigate the effect of GADD45A in the development of CML, syngeneic wild type lethally irradiated mice were reconstituted with either wild type or Gadd45a null myeloid progenitors transduced with a retroviral vector expressing the 210-kD BCR-ABL fusion oncoprotein. Loss of Gadd45a was observed to accelerate BCR-ABL driven CML resulting in the development of a more aggressive disease, a significantly shortened median mice survival time, and increased BCR-ABL expressing leukemic stem/progenitor cells (GFP+Lin- cKit+Sca+). GADD45A deficient progenitors expressing BCR-ABL exhibited increased proliferation and decreased apoptosis relative to WT counterparts, which was associated with enhanced PI3K-AKT-mTOR-4E-BP1 signaling, upregulation of p30C/EBPα expression, and hyper-activation of p38 and Stat5. Furthermore, Gadd45a expression in samples obtained from CML patients was upregulated in more indolent chronic phase CML samples and down regulated in aggressive accelerated phase CML and blast crisis CML. These results provide novel evidence that Gadd45a functions as a suppressor of BCR/ABL driven leukemia and may provide a unique prognostic marker of CML progression.


mTOR inhibition enhances efficacy of dasatinib in ABL-rearranged Ph-like B-ALL.

  • Moran Gotesman‎ et al.
  • Oncotarget‎
  • 2018‎

High-risk subtypes of B-cell acute lymphoblastic leukemia (B-ALL) include Philadelphia chromosome-positive (Ph+) B-ALL driven by the BCR-ABL1 oncogene and a more recently identified subtype known as BCR-ABL-like or Ph-like B-ALL. A hallmark of both Ph+ and Ph-like B-ALL is constitutive activation of tyrosine kinase signaling that is potentially targetable with tyrosine kinase inhibitors (TKIs). B-ALL cells also receive extracellular signals from the microenvironment that can maintain proliferation and survival following treatment with TKIs. Therefore, there is strong rationale for combining TKIs with other therapies targeting signal transduction pathways. Here we show that combinations of the ABL-directed TKI dasatinib with mTOR kinase inhibitors (TOR-KIs) are more effective than TKI alone against patient-derived Ph-like B-ALL cells harboring rearrangements of ABL1 or ABL2. We also report the establishment of a new human Ph-like B-ALL cell line that is stromal cell-independent in vitro and can be used for xenograft experiments in vivo. These findings provide rationale for clinical testing of TKI plus TOR-KIs in children and adults with Ph-like B-ALL and a new experimental tool to test promising therapeutic strategies in this poor prognosis subtype of B-ALL.


c-Abl inhibits breast cancer tumorigenesis through reactivation of p53-mediated p21 expression.

  • Chevaun D Morrison‎ et al.
  • Oncotarget‎
  • 2016‎

We previously reported that constitutive c-Abl activity (CST-Abl) abrogates the tumorigenicity of triple-negative breast cancer cells through the combined actions of two cellular events: downregulated matrix metalloproteinase (MMP) and upregulated p21Waf1/Cip1 expression. We now find decreased c-Abl expression to be significantly associated with diminished relapse-fee survival in breast cancer patients, particularly those exhibiting invasive and basal phenotypes. Moreover, CST-Abl expression enabled 4T1 cells to persist innocuously in the mammary glands of mice, doing so by exhausting their supply of cancer stem cells. Restoring MMP-9 expression and activity in CST-Abl-expressing 4T1 cells failed to rescue their malignant phenotypes; however, rendering these same cells deficient in p21 expression not only delayed their acquisition of senescent phenotypes, but also partially restored their tumorigenicity in mice. Although 4T1 cells lacked detectable expression of p53, those engineered to express CST-Abl exhibited robust production and secretion of TGF-β1 that engendered the reactivated expression of p53. Mechanistically, TGF-β-mediated p53 expression transpired through the combined actions of Smad1/5/8 and Smad2, leading to the dramatic upregulation of p21 and its stimulation of TNBC senescence. Collectively, we identified a novel c-Abl:p53:p21 signaling axis that functions as a powerful suppressor of mammary tumorigenesis and metastatic progression.


KLF5 controls glutathione metabolism to suppress p190-BCR-ABL+ B-cell lymphoblastic leukemia.

  • Cuiping Zhang‎ et al.
  • Oncotarget‎
  • 2018‎

High-risk B-cell acute lymphoblastic leukemia (B-ALL) remains a therapeutic challenge despite advances in the use of tyrosine kinase inhibitors and chimeric-antigen-receptor engineered T cells. Lymphoblastic-leukemia precursors are highly sensitive to oxidative stress. KLF5 is a member of the Krüppel-like family of transcription factors. KLF5 expression is repressed in B-ALL, including BCR-ABL1+ B-ALL. Here, we demonstrate that forced expression of KLF5 in B-ALL cells bypasses the imatinib resistance which is not associated with mutations of BCR-ABL. Expression of Klf5 impaired leukemogenic activity of BCR-ABL1+ B-cell precursors in vitro and in vivo. The complete genetic loss of Klf5 reduced oxidative stress, increased regeneration of reduced glutathione and decreased apoptosis of leukemic precursors. Klf5 regulation of glutathione levels was mediated by its regulation of glutathione-S-transferase Mu 1 (Gstm1), an important regulator of glutathione-mediated detoxification and protein glutathionylation. Expression of Klf5 or the direct Klf5 target gene Gstm1 inhibited clonogenic activity of Klf5∆/∆ leukemic B-cell precursors and unveiled a Klf5-dependent regulatory loop in glutamine-dependent glutathione metabolism. In summary, we describe a novel mechanism of Klf5 B-ALL suppressor activity through its direct role on the metabolism of antioxidant glutathione levels, a crucial positive regulator of leukemic precursor survival.


Identification of Bisindolylmaleimide IX as a potential agent to treat drug-resistant BCR-ABL positive leukemia.

  • Xin Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

Chronic myeloid leukemia (CML) treatment with BCR-ABL inhibitors is often hampered by development of drug resistance. In a screen for novel chemotherapeutic drug candidates with genotoxic activity, we identified a bisindolylmaleimide derivative, IX, as a small molecule compound with therapeutic potential against CML including drug-resistant CML. We show that Bisindolylmaleimide IX inhibits DNA topoisomerase, generates DNA breaks, activates the Atm-p53 and Atm-Chk2 pathways, and induces cell cycle arrest and cell death. Interestingly, Bisindolylmaleimide IX is highly effective in targeting cells positive for BCR-ABL. BCR-ABL positive cells display enhanced DNA damage and increased cell cycle arrest in response to Bisindolylmaleimide IX due to decreased expression of topoisomerases. Cells positive for BCR-ABL or drug-resistant T315I BCR-ABL also display increased cytotoxicity since Bisindolylmaleimide IX inhibits B-Raf and the downstream oncogene addiction pathway. Mouse cancer model experiments showed that Bisindolylmaleimide IX, at doses that show little side effect, was effective in treating leukemia-like disorders induced by BCR-ABL or T315I BCR-ABL, and prolonged the lifespan of these model mice. Thus, Bisindolylmaleimide IX presents a novel drug candidate to treat drug-resistant CML via activating BCR-ABL-dependent genotoxic stress response and inhibiting the oncogene addiction pathway activated by BCR-ABL.


WT1-mediated repression of the proapoptotic transcription factor ZNF224 is triggered by the BCR-ABL oncogene.

  • Giorgia Montano‎ et al.
  • Oncotarget‎
  • 2015‎

The Kruppel-like protein ZNF224 is a co-factor of the Wilms' tumor 1 protein, WT1. We have previously shown that ZNF224 exerts a specific proapoptotic role in chronic myelogenous leukemia (CML) K562 cells and contributes to cytosine arabinoside-induced apoptosis, by modulating WT1-dependent transcription of apoptotic genes. Here we demonstrate that ZNF224 gene expression is down-regulated both in BCR-ABL positive cell lines and in primary CML samples and is restored after imatinib and second generation tyrosine kinase inhibitors treatment. We also show that WT1, whose expression is positively regulated by BCR-ABL, represses transcription of the ZNF224 gene. Finally, we report that ZNF224 is significantly down-regulated in patients with BCR-ABL positive chronic phase-CML showing poor response or resistance to imatinib treatment as compared to high-responder patients. Taken as a whole, our data disclose a novel pathway activated by BCR-ABL that leads to inhibition of apoptosis through the ZNF224 repression. ZNF224 could thus represent a novel promising therapeutic target in CML.


LASP1 is a novel BCR-ABL substrate and a phosphorylation-dependent binding partner of CRKL in chronic myeloid leukemia.

  • Jochen J Frietsch‎ et al.
  • Oncotarget‎
  • 2014‎

Chronic myeloid leukemia (CML) is characterized by a genomic translocation generating a permanently active BCR-ABL oncogene with a complex pattern of atypically tyrosine-phosphorylated proteins that drive the malignant phenotype of CML. Recently, the LIM and SH3 domain protein 1 (LASP1) was identified as a component of a six gene signature that is strongly predictive for disease progression and relapse in CML patients. However, the underlying mechanisms why LASP1 expression correlates with dismal outcome remained unresolved. Here, we identified LASP1 as a novel and overexpressed direct substrate of BCR-ABL in CML. We demonstrate that LASP1 is specifically phosphorylated by BCR-ABL at tyrosine-171 in CML patients, which is abolished by tyrosine kinase inhibitor therapy. Further studies revealed that LASP1 phosphorylation results in an association with CRKL - another specific BCR-ABL substrate and bona fide biomarker for BCR-ABL activity. pLASP1-Y171 binds to non-phosphorylated CRKL at its SH2 domain. Accordingly, the BCR-ABL-mediated pathophysiological hyper-phosphorylation of LASP1 in CML disrupts normal regulation of CRKL and LASP1, which likely has implications on downstream BCR-ABL signaling. Collectively, our results suggest that LASP1 phosphorylation might serve as an additional candidate biomarker for assessment of BCR-ABL activity and provide a first step toward a molecular understanding of LASP1 function in CML.


Bcr-abl regulates Stat5 through Shp2, the interferon consensus sequence binding protein (Icsbp/Irf8), growth arrest specific 2 (Gas2) and calpain.

  • Elizabeth E Hjort‎ et al.
  • Oncotarget‎
  • 2016‎

Icsbp/Irf8 is an interferon regulatory transcription factor that functions as a suppressor of myeloid leukemias. Consistent with this activity, Icsbp represses a set of genes encoding proteins that promote cell proliferation/survival. One such gene encodes Gas2, a calpain inhibitor. We previously found that increased Gas2-expression in Bcr-abl+ cells stabilized βcatenin; a Calpain substrate. This was of interest, because βcatenin contributes to disease progression in chronic myeloid leukemia (CML). Calpain has additional substrates implicated in leukemogenesis, including Stat5. In the current study, we hypothesized that Stat5 activity in CML is regulated by Gas2/Calpain. We found that Bcr-abl-induced, Shp2-dependent dephosphorylation of Icsbp impaired repression of GAS2 by this transcription factor. The consequent decrease in Calpain activity stabilized Stat5 protein; increasing the absolute abundance of both phospho and total Stat5. This enhanced repression of the IRF8 promoter by Stat5 in a manner dependent on Icsbp, Gas2 and Calpain, but not Stat5 tyrosine phosphorylation. During normal myelopoiesis, increased expression and phosphorylation of Icsbp inhibits Calpain. In contrast, constitutive activation of Shp2 in Bcr-abl+ cells impairs regulation of Gas2/Calpain by Icsbp, aberrantly stabilizing Stat5 and enhancing IRF8 repression. This novel feedback mechanism enhances leukemogenesis by increasing Stat5 and decreasing Icsbp. Bcr-abl targeted tyrosine kinase inhibitors (TKIs) provide long term disease control, but CML is not cured by these agents. Our studies suggest targeting Calpain might be a rational therapeutic approach to decrease persistent leukemia stem cells (LSCs) during TKI-treatment.


Backtracked analysis of preleukemic fusion genes and DNA repair foci in umbilical cord blood of children with acute leukemia.

  • Milan Škorvaga‎ et al.
  • Oncotarget‎
  • 2018‎

The first event in origination of many childhood leukemias is a specific preleukemic fusion gene (PFG) that arises, often in utero, in hematopoietic stem/progenitor cells (HSPC) from misrepaired DNA double strand break (DSB). An immanently elevated level of DSB and impaired apoptosis may contribute to origination and persistence of PFG and donor cell-derived leukemia in recipients of allogeneic transplantation of umbilical cord blood (UCB). We investigated DSB, apoptosis and PFG in the backtracked UCB cells of leukemic patients. RNA from UCB of three patients with acute lymphoblastic leukemia, patient with acute megakaryoblastic leukemia and Down syndrome, and four healthy children was screened for common PFG by RT-qPCR. Presence of PFG was validated by sequencing. Endogenous γH2AX and 53BP1 DNA repair foci, cell populations, and apoptosis were analyzed in UCB CD34+/- cells with imaging and standard flow cytometry. We found MLL2-AF4 and BCR-ABL (p190) fusion genes in UCB of two out from four pediatric patients, apparently not detected at diagnosis, while UCB cells of TEL-AML1+ ALL patient were tested negative for this PFG and no PFG were detected in UCB cells of healthy children. No significant difference in DNA damage and apoptosis between UCB CD34+/- cells from healthy children and leukemic patients was observed, while Down syndrome trisomy increased DNA damage and resulted in distribution of cell populations resembling transient abnormal myelopoiesis. Our findings indicate increased genetic instability in UCB HSPC of leukemic patients and may be potentially used for diagnostics and exclusion of possibly affected UCB from transplantation.


Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes.

  • C Mårten Lindqvist‎ et al.
  • Oncotarget‎
  • 2016‎

To characterize the mutational patterns of acute lymphoblastic leukemia (ALL) we performed deep next generation sequencing of 872 cancer genes in 172 diagnostic and 24 relapse samples from 172 pediatric ALL patients. We found an overall greater mutational burden and more driver mutations in T-cell ALL (T-ALL) patients compared to B-cell precursor ALL (BCP-ALL) patients. In addition, the majority of the mutations in T-ALL had occurred in the original leukemic clone, while most of the mutations in BCP-ALL were subclonal. BCP-ALL patients carrying any of the recurrent translocations ETV6-RUNX1, BCR-ABL or TCF3-PBX1 harbored few mutations in driver genes compared to other BCP-ALL patients. Specifically in BCP-ALL, we identified ATRX as a novel putative driver gene and uncovered an association between somatic mutations in the Notch signaling pathway at ALL diagnosis and increased risk of relapse. Furthermore, we identified EP300, ARID1A and SH2B3 as relapse-associated genes. The genes highlighted in our study were frequently involved in epigenetic regulation, associated with germline susceptibility to ALL, and present in minor subclones at diagnosis that became dominant at relapse. We observed a high degree of clonal heterogeneity and evolution between diagnosis and relapse in both BCP-ALL and T-ALL, which could have implications for the treatment efficiency.


Computational analysis of the mutations in BAP1, PBRM1 and SETD2 genes reveals the impaired molecular processes in renal cell carcinoma.

  • Francesco Piva‎ et al.
  • Oncotarget‎
  • 2015‎

Clear cell Renal Cell Carcinoma (ccRCC) is due to loss of von Hippel-Lindau (VHL) gene and at least one out of three chromatin regulating genes BRCA1-associated protein-1 (BAP1), Polybromo-1 (PBRM1) and Set domain-containing 2 (SETD2). More than 350, 700 and 500 mutations are known respectively for BAP1, PBRM1 and SETD2 genes. Each variation damages these genes with different severity levels. Unfortunately for most of these mutations the molecular effect is unknown, so precluding a severity classification. Moreover, the huge number of these gene mutations does not allow to perform experimental assays for each of them. By bioinformatic tools, we performed predictions of the molecular effects of all mutations lying in BAP1, PBRM1 and SETD2 genes. Our results allow to distinguish whether a mutation alters protein function directly or by splicing pattern destruction and how much severely. This classification could be useful to reveal correlation with patients' outcome, to guide experiments, to select the variations that are worth to be included in translational/association studies, and to direct gene therapies.


Role of ZNF224 in c-Myc repression and imatinib responsiveness in chronic myeloid leukemia.

  • Gaetano Sodaro‎ et al.
  • Oncotarget‎
  • 2018‎

The transcription factor ZNF224 plays a key proapoptotic role in chronic myelogenous leukemia (CML), by modulating Wilms Tumor protein 1 (WT1) dependent apoptotic genes transcription. Recently, we demonstrated that Bcr-Abl signaling represses ZNF224 expression in Bcr-Abl positive CML cell lines and in CML patients. Interestingly, Imatinib and second-generation tyrosine kinase inhibitors specifically increase ZNF224 expression. On the other hand, Bcr-Abl positively modulates, via JAK2 activation, the expression of the c-Myc oncogene, which is required for Bcr-Abl oncogenic transformation in CML. Consequently, JAK2 inhibitors represent promising molecular therapeutic tools in CML. In this work, we demonstrate that ZNF224 is a novel transcriptional repressor of c-Myc in CML. We also show that ZNF224 induction by Imatinib and AG490, a specific JAK2 inhibitor, is responsible for the transcriptional repression of c-MYC, thus highlighting the crucial role of the ZNF224/c-Myc axis in Imatinib responsiveness. Interestingly, we also report that ZNF224 is induced by AG490 in Imatinib-resistant CML cells, leading to c-Myc repression and apoptosis induction. These findings suggest that the development of molecular tools able to induce ZNF224 expression could provide promising means to bypass Imatinib resistance in CML.


Decreased calpain activity in chronic myeloid leukemia impairs apoptosis by increasing survivin in myeloid progenitors and xiap1 in differentiating granulocytes.

  • Weiqi Huang‎ et al.
  • Oncotarget‎
  • 2017‎

Chronic Myeloid Leukemia (CML) is characterized by translocations between chromosomes 9 and 22, resulting in expression of Bcr-abl oncogenes. Although the clinical course of CML was revolutionized by development of Bcr-abl-directed tyrosine kinase inhibitors (TKIs), CML is not cured by these agents. Specifically, the majority of subjects relapsed in clinical trials attempting TKI discontinuation, suggesting persistence of leukemia stem cells (LSCs) even in molecular remission. Identifying mechanisms of CML-LSC persistence may suggest rationale therapeutic targets to augment TKI efficacy and lead to cure. Apoptosis resistance is one proposed mechanism. In prior studies, we identified increased expression of Growth Arrest Specific 2 (Gas2; a Calpain inhibitor) in Bcr-abl+ bone marrow progenitor cells. A number of previously described Calpain substrates might influence apoptosis in CML, including βcatenin and the X-linked Inhibitor of Apoptosis Protein 1 (Xiap1). We previously found Gas2/Calpain dependent stabilization of βcatenin in CML, and increased expression of βcatenin target genes, including Survivin (also an IAP). In the current work, we investigate contributions of Survivin and Xiap1 to Fas-resistance in Bcr-abl+ bone marrow cells. Inhibitors of these proteins are currently in clinical trials for other malignancies, but a role for either IAP in CML-LSC persistence is unknown.


Deregulated expression of miR-29a-3p, miR-494-3p and miR-660-5p affects sensitivity to tyrosine kinase inhibitors in CML leukemic stem cells.

  • Simona Salati‎ et al.
  • Oncotarget‎
  • 2017‎

The development of Imatinib mesylate (IM), which targets the oncogenic BCR-ABL fusion protein, has greatly improved the outcome of Chronic Myeloid Leukemia (CML) patients. However, BCR-ABL-positive progenitors can be detected in CML patients in complete cytogenetic response. Several evidence suggests that CML stem cells are intrinsically resistant to Tyrosine Kinase Inhibitors (TKI), and therefore they represent the most likely candidate responsible for disease relapse.In this work, we investigated the microRNA (miRNA) expression profile of different subpopulations of CML Leukemic Stem Cells (LSCs): Lin-CD34+CD38- and Lin-CD34-CD38- cells. These cell fractions have been previously shown to be endowed with TKI intrinsic resistance. Our analysis identified 33 common deregulated miRNAs in CML LSCs. Among those, 8 miRNAs were deregulated in CML independently from BCR-ABL kinase activity and therefore are likely to be involved in the BCR-ABL-independent resistance to TKI that characterizes CML LSCs. In particular, the up-regulation of miR-29a-3p and miR-660-5p observed in CML LSCs, led to the down-regulation of their respective targets TET2 and EPAS1 and conferred TKI-resistance to CML LSCs in vitro. On the other hand, miR-494-3p down-regulation in CML LSCs, leading to c-MYC up-regulation, was able to decrease TKI-induced apoptosis. These results demonstrate that aberrant miRNA expression in CML LSCs could contribute to the intrinsic TKI-resistance observed in these cell populations, and support the development of novel therapies aimed at targeting aberrantly regulated miRNAs or their targets in order to effectively eradicate CML LSCs.


SIRT1 and LSD1 competitively regulate KU70 functions in DNA repair and mutation acquisition in cancer cells.

  • Mendel Roth‎ et al.
  • Oncotarget‎
  • 2016‎

Acquisition of BCR-ABL mutations underlies drug resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors, but the molecular mechanisms of mutation acquisition are poorly understood. We previously showed that lysine deacetylase sirtuin 1, SIRT1, promotes acquisition of BCR-ABL mutations in association with enhancing KU70 mediated non-homologous end joining DNA repair. In this study, we demonstrate that lysine specific demethylase 1 (LSD1) plays an opposite role to SIRT1 in regulating DNA repair and mutation acquisition. In response to therapeutic stress and DNA damage, LSD1 and SIRT1 compete for binding to KU70 on DNA damage foci globally and on the ABL locus. The recruitment of SIRT1 or LSD1 to KU70 impacts chromatin structure but does not correlate well with their direct histone modification functions, and SIRT1 helps maintain histone H4K16 acetylation and open chromatin for repair. The competitive KU70 binding by these proteins affects cancer cells' ability to repair broken DNA and acquire resistant genetic mutations in CML and prostate cancer cells. We identify that the core domain of KU70 binds both LSD1 and SIRT1, forming a molecular basis for the competition. The C-terminal SAP motif of KU70 mediates LSD1/SIRT1 competitive interaction by suppressing LSD1 binding to KU70 and ectopic expression of SAP-deleted KU70 to CML cells compromises their ability to acquire BCR-ABL mutations. Our study reveals a novel cellular stress response mechanism in cancer cells and a key role of LSD1/SIRT1/KU70 dynamic interaction in regulating DNA repair and mutation acquisition.


Probing the prostate tumour microenvironment II: Impact of hypoxia on a cell model of prostate cancer progression.

  • Claire Tonry‎ et al.
  • Oncotarget‎
  • 2017‎

Approximately one in six men are diagnosed with Prostate Cancer every year in the Western world. Although it can be well managed and non-life threatening in the early stages, over time many patients cease to respond to treatment and develop castrate resistant prostate cancer (CRPC). CRPC represents a clinically challenging and lethal form of prostate cancer. Progression of CRPC is, in part, driven by the ability of cancer cells to alter their metabolic profile during the course of tumourgenesis and metastasis so that they can survive in oxygen and nutrient-poor environments and even withstand treatment. This work was carried out as a continuation of a study aimed towards gaining greater mechanistic understanding of how conditions within the tumour microenvironment impact on both androgen sensitive (LNCaP) and androgen independent (LNCaP-abl and LNCaP-abl-Hof) prostate cancer cell lines. Here we have applied technically robust and reproducible label-free liquid chromatography mass spectrometry analysis for comprehensive proteomic profiling of prostate cancer cell lines under hypoxic conditions. This led to the identification of over 4,000 proteins - one of the largest protein datasets for prostate cancer cell lines established to date. The biological and clinical significance of proteins showing a significant change in expression as result of hypoxic conditions was established. Novel, intuitive workflows were subsequently implemented to enable robust, reproducible and high throughput verification of selected proteins of interest. Overall, these data suggest that this strategy supports identification of protein biomarkers of prostate cancer progression and potential therapeutic targets for CRPC.


Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLY-AMPK-AR feedback mechanism.

  • Supriya Shah‎ et al.
  • Oncotarget‎
  • 2016‎

The androgen receptor (AR) plays a central role in prostate tumor growth. Inappropriate reactivation of the AR after androgen deprivation therapy promotes development of incurable castration-resistant prostate cancer (CRPC). In this study, we provide evidence that metabolic features of prostate cancer cells can be exploited to sensitize CRPC cells to AR antagonism. We identify a feedback loop between ATP-citrate lyase (ACLY)-dependent fatty acid synthesis, AMPK, and the AR in prostate cancer cells that could contribute to therapeutic resistance by maintaining AR levels. When combined with an AR antagonist, ACLY inhibition in CRPC cells promotes energetic stress and AMPK activation, resulting in further suppression of AR levels and target gene expression, inhibition of proliferation, and apoptosis. Supplying exogenous fatty acids can restore energetic homeostasis; however, this rescue does not occur through increased β-oxidation to support mitochondrial ATP production. Instead, concurrent inhibition of ACLY and AR may drive excess ATP consumption as cells attempt to cope with endoplasmic reticulum (ER) stress, which is prevented by fatty acid supplementation. Thus, fatty acid metabolism plays a key role in coordinating ER and energetic homeostasis in CRPC cells, thereby sustaining AR action and promoting proliferation. Consistent with a role for fatty acid metabolism in sustaining AR levels in prostate cancer in vivo, AR mRNA levels in human prostate tumors correlate positively with expression of ACLY and other fatty acid synthesis genes. The ACLY-AMPK-AR network can be exploited to sensitize CRPC cells to AR antagonism, suggesting novel therapeutic opportunities for prostate cancer.


Mutational spectrum and risk stratification of intermediate-risk acute myeloid leukemia patients based on next-generation sequencing.

  • Bianhong Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Intermediate-risk acute myeloid leukemia (IR-AML), which accounts for a substantial number of AML cases, is highly heterogeneous. Although several mutations have been identified, the heterogeneity of AML is uncertain because novel mutations have yet to be discovered. Here we applied next generation sequencing (NGS) platform to screen mutational hotspots in 410 genes relevant to hematological malignancy. IR-AML samples (N=95) were sequenced by Illumina Hiseq and mutations in 101 genes were identified. Only seven genes (CEBPA, NPM1, DNMT3A, FLT3-ITD, NRAS, IDH2 and WT1) were mutated in more than 10% of patients. Genetic interaction analysis identified several cooperative and exclusive patterns of overlapping mutations. Mutational analysis indicated some correlation between genotype and phenotype. FLT3-ITD mutations were identified as independent factors of poor prognosis, while CEBPA mutations were independent favorable factors. Co-occurrence of FLT3-ITD, NPM1 and DNMT3A mutations was identified with associated with specific clinical AML features and poor outcomes. Furthermore, by integrating multiple mutations in the survival analysis, 95 IR-AML patients could be stratified into three distinct risk groups allowing reductions in IR-AML by one-third. Our study offers deep insights into the molecular pathogenesis and biology of AML and indicated that the prognosis of IR-AML could be further stratified by different mutation combinations which may direct future treatment intervention.


Sweyjawbu expression is a predictor of ALK rearrangement status in lymphoma.

  • Kai Xue‎ et al.
  • Oncotarget‎
  • 2017‎

In recent years molecular subtyping has become an important tool for accurate diagnosis of many cancers; for example, the detection of ALK rearrangements in lymphoma and lung cancer helps clinicians provide more precise diagnosis and treatment. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are two routine approaches used to detect ALK rearrangements. However, difficulties with acquisition of biopsy samples, high costs, and long waiting time for results negatively impact the application of these methods. A rapid and inexpensive alternative would be a useful complement to current ALK rearrangement detection. We identified a novel gene, sweyjawbu, from Affymetrix microarray studies. Its expression correlated strongly with ALK in an analysis of 1037 cancer cell lines (correlation coefficient = 0.92). By comparing sweyjawbu transcript levels, it was possible to discriminate 12 ALK rearrangement-positive lymphoma samples from 64 ALK rearrangement-negative lymphomas. Moreover, combining measurements of sweyjawbu expression and the ratio of the 5' and 3' portions of the ALK transcript provided even more accurate identification of ALK rearrangement-positive lymphomas. This novel approach is an excellent complement or alternative to existing FISH and IHC methodologies.


Hepatitis B virus PreS2-mutant large surface antigen activates store-operated calcium entry and promotes chromosome instability.

  • Tim Ting-Chung Yen‎ et al.
  • Oncotarget‎
  • 2016‎

Hepatitis B virus (HBV) is a driver of hepatocellular carcinoma, and two viral products, X and large surface antigen (LHBS), are viral oncoproteins. During chronic viral infection, immune-escape mutants on the preS2 region of LHBS (preS2-LHBS) are gain-of-function mutations that are linked to preneoplastic ground glass hepatocytes (GGHs) and early disease onset of hepatocellular carcinoma. Here, we show that preS2-LHBS provoked calcium release from the endoplasmic reticulum (ER) and triggered stored-operated calcium entry (SOCE). The activation of SOCE increased ER and plasma membrane (PM) connections, which was linked by ER- resident stromal interaction molecule-1 (STIM1) protein and PM-resident calcium release- activated calcium modulator 1 (Orai1). Persistent activation of SOCE induced centrosome overduplication, aberrant multipolar division, chromosome aneuploidy, anchorage-independent growth, and xenograft tumorigenesis in hepatocytes expressing preS2- LHBS. Chemical inhibitions of SOCE machinery and silencing of STIM1 significantly reduced centrosome numbers, multipolar division, and xenograft tumorigenesis induced by preS2-LHBS. These results provide the first mechanistic link between calcium homeostasis and chromosome instability in hepatocytes carrying preS2-LHBS. Therefore, persistent activation of SOCE represents a novel pathological mechanism in HBV-mediated hepatocarcinogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: