Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Integrative omics analysis reveals relationships of genes with synthetic lethal interactions through a pan-cancer analysis.

  • Li Guo‎ et al.
  • Computational and structural biotechnology journal‎
  • 2020‎

Synthetic lethality is thought to play an important role in anticancer therapies. Herein, to understand the potential distributions and relationships between synthetic lethal interactions between genes, especially for pairs deriving from different sources, we performed an integrative analysis of genes at multiple molecular levels. Based on inter-species phylogenetic conservation of synthetic lethal interactions, gene pairs from yeast and humans were analyzed; a total of 37,588 candidate gene pairs containing 7,816 genes were collected. Of these, 49.74% of genes had 2-10 interactions, 22.93% were involved in hallmarks of cancer, and 21.61% were identified as core essential genes. Many genes were shown to have important biological roles via functional enrichment analysis, and 65 were identified as potentially crucial in the pathophysiology of cancer. Gene pairs with dysregulated expression patterns had higher prognostic values. Further screening based on mutation and expression levels showed that remaining gene pairs were mainly derived from human predicted or validated pairs, while most predicted pairs from yeast were filtered from analysis. Genes with synthetic lethality were further analyzed with their interactive microRNAs (miRNAs) at the isomiR level which have been widely studied as negatively regulatory molecules. The miRNA-mRNA interaction network revealed that many synthetic lethal genes contributed to the cell cycle (seven of 12 genes), cancer pathways (five of 12 genes), oocyte meiosis, the p53 signaling pathway, and hallmarks of cancer. Our study contributes to the understanding of synthetic lethal interactions and promotes the application of genetic interactions in further cancer precision medicine.


Mapping the landscape of synthetic lethal interactions in liver cancer.

  • Chen Yang‎ et al.
  • Theranostics‎
  • 2021‎

Almost all the current therapies against liver cancer are based on the "one size fits all" principle and offer only limited survival benefit. Fortunately, synthetic lethality (SL) may provide an alternate route towards individualized therapy in liver cancer. The concept that simultaneous losses of two genes are lethal to a cell while a single loss is non-lethal can be utilized to selectively eliminate tumors with genetic aberrations. Methods: To infer liver cancer-specific SL interactions, we propose a computational pipeline termed SiLi (statistical inference-based synthetic lethality identification) that incorporates five inference procedures. Based on large-scale sequencing datasets, SiLi analysis was performed to identify SL interactions in liver cancer. Results: By SiLi analysis, a total of 272 SL pairs were discerned, which included 209 unique target candidates. Among these, polo-like kinase 1 (PLK1) was considered to have considerable therapeutic potential. Further computational and experimental validation of the SL pair TP53-PLK1 demonstrated that inhibition of PLK1 could be a novel therapeutic strategy specifically targeting those patients with TP53-mutant liver tumors. Conclusions: In this study, we report a comprehensive analysis of synthetic lethal interactions of liver cancer. Our findings may open new possibilities for patient-tailored therapeutic interventions in liver cancer.


Inhibition of the Polyamine Synthesis Pathway Is Synthetically Lethal with Loss of Argininosuccinate Synthase 1.

  • Matthew Locke‎ et al.
  • Cell reports‎
  • 2016‎

Argininosuccinate synthase 1 (ASS1) is the rate-limiting enzyme for arginine biosynthesis. ASS1 expression is lost in a range of tumor types, including 50% of malignant pleural mesotheliomas. Starving ASS1-deficient cells of arginine with arginine blockers such as ADI-PEG20 can induce selective lethality and has shown great promise in the clinical setting. We have generated a model of ADI-PEG20 resistance in mesothelioma cells. This resistance is mediated through re-expression of ASS1 via demethylation of the ASS1 promoter. Through coordinated transcriptomic and metabolomic profiling, we have shown that ASS1-deficient cells have decreased levels of acetylated polyamine metabolites, together with a compensatory increase in the expression of polyamine biosynthetic enzymes. Upon arginine deprivation, polyamine metabolites are decreased in the ASS1-deficient cells and in plasma isolated from ASS1-deficient mesothelioma patients. We identify a synthetic lethal dependence between ASS1 deficiency and polyamine metabolism, which could potentially be exploited for the treatment of ASS1-negative cancers.


SLOAD: a comprehensive database of cancer-specific synthetic lethal interactions for precision cancer therapy via multi-omics analysis.

  • Li Guo‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2022‎

Synthetic lethality has been widely concerned because of its potential role in cancer treatment, which can be harnessed to selectively kill cancer cells via identifying inactive genes in a specific cancer type and further targeting the corresponding synthetic lethal partners. Herein, to obtain cancer-specific synthetic lethal interactions, we aimed to predict genetic interactions via a pan-cancer analysis from multiple molecular levels using random forest and then develop a user-friendly database. First, based on collected public gene pairs with synthetic lethal interactions, candidate gene pairs were analyzed via integrating multi-omics data, mainly including DNA mutation, copy number variation, methylation and mRNA expression data. Then, integrated features were used to predict cancer-specific synthetic lethal interactions using random forest. Finally, SLOAD (http://www.tmliang.cn/SLOAD) was constructed via integrating these findings, which was a user-friendly database for data searching, browsing, downloading and analyzing. These results can provide candidate cancer-specific synthetic lethal interactions, which will contribute to drug designing in cancer treatment that can promote therapy strategies based on the principle of synthetic lethality. Database URL http://www.tmliang.cn/SLOAD/.


Screening and identification of genes associated with cell proliferation in cholangiocarcinoma.

  • Li Guo‎ et al.
  • Aging‎
  • 2020‎

Cholangiocarcinoma (CCA), an aggressive tumor with poor prognosis, is a malignant cancer with increasing incidence and mortality rates. It is important to survey crucial genes in CCA to find and design potential drug targets, especially for those genes associated with cell proliferation that is a key biological process in tumorgenesis. Herein, we surveyed genes associated with cell proliferation via a comprehensive pan-cancer analysis. Candidate genes were further analyzed using multiple approaches, including cross-analysis from diverse molecular levels, examination of potential function and interactions, and additional experimental validation. We primarily screened 15 potential genes based on 11 validated genes, and these 26 genes were further examined to delineate their biological functions and potential roles in cancer treatment. Several of them were involved synthetically lethal genetic interactions, especially for RECQL4, TOP2A, MKI67 and ASPM, indicating their potential roles in drug design and cancer treatment. Further experimental validation indicated that some genes were significantly upregulated in several cancer cell lines, implying their important roles in tumorigenesis. Our study identifies some genes associated with cell proliferation, which may be potential future targets in molecular targeted therapy.


Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma.

  • Ling Zhang‎ et al.
  • American journal of human genetics‎
  • 2015‎

Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets.


Meta-analysis of genetic programs between idiopathic pulmonary fibrosis and sarcoidosis.

  • Dong Leng‎ et al.
  • PloS one‎
  • 2013‎

Idiopathic pulmonary fibrosis (IPF) and pulmonary sarcoidosis are typical interstitial lung diseases with unknown etiology that cause lethal lung damages. There are notable differences between these two pulmonary disorders, although they do share some similarities. Gene expression profiles have been reported independently, but differences on the transcriptional level between these two entities have not been investigated.


Systematic cancer-testis gene expression analysis identified CDCA5 as a potential therapeutic target in esophageal squamous cell carcinoma.

  • Jing Xu‎ et al.
  • EBioMedicine‎
  • 2019‎

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies with poor prognosis. Cancer-testis genes (CTGs) have been vigorously pursued as targets for cancer immunotherapy, but the expressive patterns and functional roles of CTGs remain unclear in ESCC.


The locust genome provides insight into swarm formation and long-distance flight.

  • Xianhui Wang‎ et al.
  • Nature communications‎
  • 2014‎

Locusts are one of the world's most destructive agricultural pests and represent a useful model system in entomology. Here we present a draft 6.5 Gb genome sequence of Locusta migratoria, which is the largest animal genome sequenced so far. Our findings indicate that the large genome size of L. migratoria is likely to be because of transposable element proliferation combined with slow rates of loss for these elements. Methylome and transcriptome analyses reveal complex regulatory mechanisms involved in microtubule dynamic-mediated synapse plasticity during phase change. We find significant expansion of gene families associated with energy consumption and detoxification, consistent with long-distance flight capacity and phytophagy. We report hundreds of potential insecticide target genes, including cys-loop ligand-gated ion channels, G-protein-coupled receptors and lethal genes. The L. migratoria genome sequence offers new insights into the biology and sustainable management of this pest species, and will promote its wide use as a model system.


Protein Kinase C δ (PKCδ) Attenuates Bleomycin Induced Pulmonary Fibrosis via Inhibiting NF-κB Signaling Pathway.

  • Jun Wang‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and lethal interstitial lung disease characterized by consistent pulmonary inflammation. Although protein kinase C delta (PKCδ) is involved in broad scope cellular response, the role of PKCδ in IPF is complicated and has not been fully defined yet. Here, we reported that PKCδ deficiency (PKCδ-/-) aggravated bleomycin (BLM)-induced pulmonary fibrosis and inflammation. Upon challenge with BLM, the pulmonary capillary permeability, immune cell infiltration, inflammatory cytokine production, and collagen deposition were enhanced in PKCδ-/- mice compared to that in PKCδ+/+ mice. In response to poly(I:C) stimulation, PKCδ deficient macrophages displayed an increased production of IL-1β, IL-6, TNF-α, and IL-33, which were associated with an enhanced NF-κB activation. Furthermore, we found that PKCδ could directly bind to and phosphorylate A20, an inhibitory protein of NF-κB signal. These results suggested that PKCδ may inhibit the NF-κB signaling pathway via enhancing the stability and activity of A20, which in turn attenuates pulmonary fibrosis, suggesting that PKCδ is a promising target for treating pulmonary fibrosis.


PDL1 Fusion Protein Protects Against Experimental Cerebral Malaria via Repressing Over-Reactive CD8+ T Cell Responses.

  • Jun Wang‎ et al.
  • Frontiers in immunology‎
  • 2018‎

Cerebral malaria (CM), mainly caused by Plasmodium falciparum (P. f.), is one of the most lethal complications of severe malaria. As immunopathology mediated by brain-infiltrating CD8+ T cells is the major pathogenesis of CM, there is no safe and efficient treatment clinically focused on CD8+ T cells. New methods are needed to protect the host from injury. As evidence has shown that programmed death-1 (PD-1) is one of the most efficient immunomodulatory molecules, we constructed two soluble fusion proteins, PDL1-IgG1Fc and PDL2-IgG1Fc, to enhance PD-1/PDL signaling pathways in innate and adaptive immune cells, including macrophages and CD8+ T cells. Firstly, we confirmed that PD-1 signal pathway deficiency led to higher levels of CD8+ T cell proliferation and shorter survival time in PD-1-deficient (Pdcd1-/-) mice than WT mice. Secondly, PDL1-IgG1Fc-treated mice exhibited a more prolonged survival time than control groups. Moreover, PDL1-IgG1Fc was observed to ameliorate blood-brain barrier (BBB) disruption by limiting the over-reactive CD8+ T cell cytotoxicity during experimental cerebral malaria (ECM). Further studies found thatPDL1-IgG1Fc-treated macrophages showed significant suppression in macrophage M1 polarization and their antigen presentation capability to CD8+ T cells. In conclusion, our results demonstrated that the administration of PDL1-IgG1Fc in the early stage before ECM onset has an obvious effect on the maintenance of immune microenvironment homeostasis in the brain and is deemed a promising candidate for protection against CM in the future.


Driver gene combinations dictate cutaneous squamous cell carcinoma disease continuum progression.

  • Peter Bailey‎ et al.
  • Nature communications‎
  • 2023‎

The molecular basis of disease progression from UV-induced precancerous actinic keratosis (AK) to malignant invasive cutaneous squamous cell carcinoma (cSCC) and potentially lethal metastatic disease remains unclear. DNA sequencing studies have revealed a massive mutational burden but have yet to illuminate mechanisms of disease progression. Here we perform RNAseq transcriptomic profiling of 110 patient samples representing normal sun-exposed skin, AK, primary and metastatic cSCC and reveal a disease continuum from a differentiated to a progenitor-like state. This is accompanied by the orchestrated suppression of master regulators of epidermal differentiation, dynamic modulation of the epidermal differentiation complex, remodelling of the immune landscape and an increase in the preponderance of tumour specific keratinocytes. Comparative systems analysis of human cSCC coupled with the generation of genetically engineered murine models reveal that combinatorial sequential inactivation of the tumour suppressor genes Tgfbr2, Trp53, and Notch1 coupled with activation of Ras signalling progressively drives cSCC progression along a differentiated to progenitor axis. Taken together we provide a comprehensive map of the cSCC disease continuum and reveal potentially actionable events that promote and accompany disease progression.


Pathogenicity of Aeromonas veronii Causing Mass Mortality of Largemouth Bass (Micropterus salmoides) and Its Induced Host Immune Response.

  • Xinhai Zhu‎ et al.
  • Microorganisms‎
  • 2022‎

Aeromonas veronii is as an important opportunist pathogen of many aquatic animals, which is wildly distributed in various aquatic environments. In this study, a dominant bacterium GJL1 isolated from diseased M. salmoides was identified as A. veronii according to the morphological, physiological, and biochemical characteristics, as well as molecular identification. Detection of the virulence genes showed the isolate GJL1 carried outer membrane protein A (ompA), flagellin (flgA, flgM, flgN), aerolysin (aer), cytolytic enterotoxin (act), DNases (exu), and hemolysin (hly), and the isolate GJL1 also produced caseinase, lipase, gelatinase, and hemolysin. The virulence of strain GJL1 was confirmed by experimental infection; the median lethal dosage (LD50) of the GJL1 for largemouth bass was 3.6 × 105 CFU/mL, and histopathological analysis revealed that the isolate could cause obvious inflammatory responses in M. salmoides. Additionally, the immune-related gene expression in M. salmoides was evaluated, and the results showed that IgM, HIF-1α, Hep-1, IL-15, TGF-β1, and Cas-3 were significantly upregulated after A. veronii infection. Our results indicated that A. veronii was an etiological agent causing the mass mortality of M. salmoides, which contributes to understanding the immune response of M. salmoides against A. veronii infection.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: