2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 62 papers

The essential role of PRAK in tumor metastasis and its therapeutic potential.

  • Yuqing Wang‎ et al.
  • Nature communications‎
  • 2021‎

Metastasis is the leading cause of cancer-related death. Despite the recent advancements in cancer treatment, there is currently no approved therapy for metastasis. The present study reveals a potent and selective activity of PRAK in the regulation of tumor metastasis. While showing no apparent effect on the growth of primary breast cancers or subcutaneously inoculated tumor lines, Prak deficiency abrogates lung metastases in PyMT mice or mice receiving intravenous injection of tumor cells. Consistently, PRAK expression is closely associated with metastatic risk in human cancers. Further analysis indicates that loss of function of PRAK leads to a pronounced inhibition of HIF-1α protein synthesis, possibly due to reduced mTORC1 activities. Notably, pharmacological inactivation of PRAK with a clinically relevant inhibitor recapitulates the anti-metastatic effect of Prak depletion, highlighting the therapeutic potential of targeting PRAK in the control of metastasis.


ATF4 May Be Essential for Adaption of the Ocular Lens to Its Avascular Environment.

  • Jiawen Xiang‎ et al.
  • Cells‎
  • 2023‎

The late embryonic mouse lens requires the transcription factor ATF4 for its survival although the underlying mechanisms were unknown. Here, RNAseq analysis revealed that E16.5 Atf4 null mouse lenses downregulate the mRNA levels of lens epithelial markers as well as known markers of late lens fiber cell differentiation. However, a comparison of this list of differentially expressed genes (DEGs) with other known transcriptional regulators of lens development indicated that ATF4 expression is not directly controlled by the previously described lens gene regulatory network. Pathway analysis revealed that the Atf4 DEG list was enriched in numerous genes involved in nutrient transport, amino acid biosynthesis, and tRNA charging. These changes in gene expression likely result in the observed reductions in lens free amino acid and glutathione levels, which would result in the observed low levels of extractable lens protein, finally leading to perinatal lens disintegration. These data demonstrate that ATF4, via its function in the integrated stress response, is likely to play a crucial role in mediating the adaption of the lens to the avascularity needed to maintain lens transparency.


SOX2 is essential for astrocyte maturation and its deletion leads to hyperactive behavior in mice.

  • Yan Wang‎ et al.
  • Cell reports‎
  • 2022‎

Children with SOX2 deficiency develop ocular disorders and extra-ocular CNS anomalies. Animal data show that SOX2 is essential for retinal and neural stem cell development. In the CNS parenchyma, SOX2 is primarily expressed in astroglial and oligodendroglial cells. Here, we report a crucial role of astroglial SOX2 in postnatal brain development. Astroglial Sox2-deficient mice develop hyperactivity in locomotion and increased neuronal excitability in the corticostriatal circuit. Sox2 deficiency inhibits postnatal astrocyte maturation molecularly, morphologically, and electrophysiologically without affecting astroglia proliferation. Mechanistically, SOX2 directly binds to a cohort of astrocytic signature and functional genes, the expression of which is significantly reduced in Sox2-deficient CNS and astrocytes. Consistently, Sox2 deficiency remarkably reduces glutamate transporter expression and compromised astrocyte function of glutamate uptake. Our study provides insights into the cellular mechanisms underlying brain defects in children with SOX2 mutations and suggests a link of astrocyte SOX2 with extra-ocular abnormalities in SOX2-mutant subjects.


Prediction of drought-resistant genes in Arabidopsis thaliana using SVM-RFE.

  • Yanchun Liang‎ et al.
  • PloS one‎
  • 2011‎

Identifying genes with essential roles in resisting environmental stress rates high in agronomic importance. Although massive DNA microarray gene expression data have been generated for plants, current computational approaches underutilize these data for studying genotype-trait relationships. Some advanced gene identification methods have been explored for human diseases, but typically these methods have not been converted into publicly available software tools and cannot be applied to plants for identifying genes with agronomic traits.


Transcriptome Analysis Reveals Key Seed-Development Genes in Common Buckwheat (Fagopyrum esculentum).

  • Hongyou Li‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Seed development is an essential and complex process, which is involved in seed size change and various nutrients accumulation, and determines crop yield and quality. Common buckwheat (Fagopyrum esculentum Moench) is a widely cultivated minor crop with excellent economic and nutritional value in temperate zones. However, little is known about the molecular mechanisms of seed development in common buckwheat (Fagopyrum esculentum). In this study, we performed RNA-Seq to investigate the transcriptional dynamics and identify the key genes involved in common buckwheat seed development at three different developmental stages. A total of 4619 differentially expressed genes (DEGs) were identified. Based on the results of Gene Ontology (GO) and KEGG analysis of DEGs, many key genes involved in the seed development, including the Ca2+ signal transduction pathway, the hormone signal transduction pathways, transcription factors (TFs), and starch biosynthesis-related genes, were identified. More importantly, 18 DEGs were identified as the key candidate genes for seed size through homologous query using the known seed size-related genes from different seed plants. Furthermore, 15 DEGs from these identified as the key genes of seed development were selected to confirm the validity of the data by using quantitative real-time PCR (qRT-PCR), and the results show high consistency with the RNA-Seq results. Taken together, our results revealed the underlying molecular mechanisms of common buckwheat seed development and could provide valuable information for further studies, especially for common buckwheat seed improvement.


Identification and Characterization of als Genes Involved in D-Allose Metabolism in Lineage II Strain of Listeria monocytogenes.

  • Lu Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Listeria monocytogenes, an important food-borne pathogen, causes listeriosis and is widely distributed in many different environments. In a previous study, we developed a novel enrichment broth containing D-allose that allows better isolation of L. monocytogenes from samples. However, the mechanism of D-allose utilization by L. monocytogenes remains unclear. In the present study, we determined the metabolism of D-allose in L. monocytogenes and found that lineage II strains of L. monocytogenes can utilize D-allose as the sole carbon source for growth, but lineage I and III strains cannot. Transcriptome analysis and sequence alignment identified six genes (lmo0734 to 0739) possibly related to D-allose metabolism that are only present in the genomes of lineage II strains. Recombinant strain ICDC-LM188 containing these genes showed utilization of D-allose by growth assays and Biolog phenotype microarrays. Moreover, lmo0734 to 0736 were verified to be essential for D-allose metabolism, lmo0737 and 0738 affected the growth rate of L. monocytogenes in D-allose medium, while lmo0739 was dispensable in the metabolism of D-allose in L. monocytogenes. This is the first study to identify the genes related to D-allose metabolism in L. monocytogenes, and their distribution in lineage II strains. Our study preliminarily determined the effects of these genes on the growth of L. monocytogenes, which will benefit the isolation and epidemiological research of L. monocytogenes.


Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots.

  • Liang Xu‎ et al.
  • Journal of experimental botany‎
  • 2013‎

MicroRNAs (miRNAs) are endogenous non-coding small RNAs that play vital regulatory roles in plant growth, development, and environmental stress responses. Cadmium (Cd) is a non-essential heavy metal that is highly toxic to living organisms. To date, a number of conserved and non-conserved miRNAs have been identified to be involved in response to Cd stress in some plant species. However, the miRNA-mediated gene regulatory networks responsive to Cd stress in radish (Raphanus sativus L.) remain largely unexplored. To dissect Cd-responsive miRNAs and their targets systematically at the global level, two small RNA libraries were constructed from Cd-treated and Cd-free roots of radish seedlings. Using Solexa sequencing technology, 93 conserved and 16 non-conserved miRNAs (representing 26 miRNA families) and 28 novel miRNAs (representing 22 miRNA families) were identified. In all, 15 known and eight novel miRNA families were significantly differently regulated under Cd stress. The expression patterns of a set of Cd-responsive miRNAs were validated by quantitative real-time PCR. Based on the radish mRNA transcriptome, 18 and 71 targets for novel and known miRNA families, respectively, were identified by the degradome sequencing approach. Furthermore, a few target transcripts including phytochelatin synthase 1 (PCS1), iron transporter protein, and ABC transporter protein were involved in plant response to Cd stress. This study represents the first transcriptome-based analysis of miRNAs and their targets responsive to Cd stress in radish roots. These findings could provide valuable information for functional characterization of miRNAs and their targets in regulatory networks responsive to Cd stress in radish.


Myxococcus xanthus DK1622 Coordinates Expressions of the Duplicate groEL and Single groES Genes for Synergistic Functions of GroELs and GroES.

  • Li Zhuo‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Chaperonin GroEL (Cpn60) requires cofactor GroES (Cpn10) for protein refolding in bacteria that possess single groEL and groES genes in a bicistronic groESL operon. Among 4,861 completely-sequenced prokaryotic genomes, 884 possess duplicate groEL genes and 770 possess groEL genes with no neighboring groES. It is unclear whether stand-alone groEL requires groES in order to function and, if required, how duplicate groEL genes and unequal groES genes balance their expressions. In Myxococcus xanthus DK1622, we determined that, while duplicate groELs were alternatively deletable, the single groES that clusters with groEL1 was essential for cell survival. Either GroEL1 or GroEL2 required interactions with GroES for in vitro and in vivo functions. Deletion of groEL1 or groEL2 resulted in decreased expressions of both groEL and groES; and ectopic complementation of groEL recovered not only the groEL but also groES expressions. The addition of an extra groES gene upstream groEL2 to form a bicistronic operon had almost no influence on groES expression and the cell survival rate, whereas over-expression of groES using a self-replicating plasmid simultaneously increased the groEL expressions. The results indicated that M. xanthus DK1622 cells coordinate expressions of the duplicate groEL and single groES genes for synergistic functions of GroELs and GroES. We proposed a potential regulation mechanism for the expression coordination.


A putative effector UvHrip1 inhibits BAX-triggered cell death in Nicotiana benthamiana, and infection of Ustilaginoidea virens suppresses defense-related genes expression.

  • Yingling Wang‎ et al.
  • PeerJ‎
  • 2020‎

Rice false smut (RFS), caused by Ustilaginoidea virens, is one of the most detrimental rice fungal diseases and pose a severe threat to rice production and quality. Effectors in U. virens often act as a set of essential virulence factors that play crucial roles in the interaction between host and the pathogen. Thus, the functions of each effector in U. virens need to be further explored. Here, we performed multiple alignment analysis and demonstrated a small secreted hypersensitive response-inducing protein (hrip), named UvHrip1, was highly conserved in fungi. The predicted SP of UvHrip1 was functional, which guided SUC secreted from yeast and was recognized by plant cells. The localization of UvHrip1 was mainly in the nucleus and cytoplasm monitored through the GFP fusion protein in Nicotiana benthamiana cells. uvhrip1 was drastically up-regulated in the susceptible cultivar LYP9 of rice during the pathogen infection, while did not in the resistant cultivar IR28. We also proved that UvHrip1 suppressed the mammalian BAX-induced necrosis-like defense symptoms in N. benthamiana. Furthermore, patterns of expression of defense-related genes, OsPR1#012 and OsPR10b, were regulated over U. virens infection in rice. Collectively, our data demonstrated that infection of U. virens suppresses defense-related genes expression and UvHrip1 was most likely a core effector in regulating plant immunity.


HAK/KUP/KT family potassium transporter genes are involved in potassium deficiency and stress responses in tea plants (Camellia sinensis L.): expression and functional analysis.

  • Tianyuan Yang‎ et al.
  • BMC genomics‎
  • 2020‎

Tea plant is one of the most important non-alcoholic beverage crops worldwide. While potassium (K+) is an essential macronutrient and greatly affects the growth and development of plants, the molecular mechanism underlying K+ uptake and transport in tea plant root, especially under limited-K+ conditions, is still poorly understood. In plants, HAK/KUP/KT family members play a crucial role in K+ acquisition and translocation, growth and development, and response to stresses. Nevertheless, the biological functions of these genes in tea plant are still in mystery, especially their roles in K+ uptake and stress responses.


Identification of deep intronic variants of PAH in phenylketonuria using full-length gene sequencing.

  • Chuan Zhang‎ et al.
  • Orphanet journal of rare diseases‎
  • 2023‎

Phenylketonuria (PKU) is an autosomal recessive congenital metabolic disorder caused by PAH variants. Previously, approximately 5% of PKU patients remained undiagnosed after Sanger sequencing and multiplex ligation-dependent probe amplification. To date, increasing numbers of pathogenic deep intronic variants have been reported in more than 100 disease-associated genes.


miR-382 inhibits tumor growth and enhance chemosensitivity in osteosarcoma.

  • Meng Xu‎ et al.
  • Oncotarget‎
  • 2014‎

Dysregulation of miRNAs is involved in osteosarcoma (OS). Here, we demonstrate that miR-382 is decreased in specimens of OS patients with a poor chemoresponse compared to those with a good chemoresponse. In addition, our clinical data show that decreased miR-382 was associated with poor survival in OS patients. Overexpression of miR-382 inhibited cell growth and chemoresistance by targeting KLF12 and HIPK3, respectively. In contrast, inhibition of miR-382 or overexpression of target genes stimulated OS cell growth and chemoresistance both in vitro and in vivo. Taken together, these findings suggest that miR-382 is a tumor suppressor miRNA and induction of miR-382 is a potential strategy to inhibit OS progression.


Serum microRNA-17 functions as a prognostic biomarker in osteosarcoma.

  • Shuai Li‎ et al.
  • Oncology letters‎
  • 2016‎

MicroRNAs (miRNAs/miRs) are a class of small noncoding RNA molecules that have important roles in regulating the expression of target genes associated with the development and progression of cancer. The majority of miRNAs are expressed in a highly tissue- and region-specific manner, and released into the bloodstream as a consequences of different diseases. Furthermore, altered levels of miRNAs have been observed in several diseases, including cancer. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) demonstrated that circulating miR-17 levels were significantly upregulated in patients with osteosarcoma (OS) compared with healthy subjects. RT-qPCR also revealed that high levels of circulating miR-17 expression were inversely correlated with phosphatase and tensin homolog expression, which was identified as a target gene of miR-17 in OS tissues. Furthermore, the overall survival of patients with OS was shorter in those with high miR-17 expression compared with moderate and low expression. Taken together, these findings indicate that miR-17 may function as a useful diagnostic and prognosis biomarker or therapeutic target of OS.


Integrative analysis of competing endogenous RNA network focusing on long noncoding RNA associated with progression of cutaneous melanoma.

  • Siyi Xu‎ et al.
  • Cancer medicine‎
  • 2018‎

Cutaneous melanoma (CM) is the most malignant tumor of skin cancers because of its rapid development and high mortality rate. Long noncoding RNAs (lncRNAs), which play essential roles in the tumorigenesis and metastasis of CM and interplay with microRNAs (miRNAs) and mRNAs, are hopefully considered to be efficient biomarkers to detect deterioration during the progression of CM to improve the prognosis. Bioinformatics analysis was fully applied to predict the vital lncRNAs and the associated miRNAs and mRNAs, which eventually constructed the competing endogenous RNA (ceRNA) network to explain the RNA expression patterns in the progression of CM. Further statistical analysis emphasized the importance of these key genes, which were statistically significantly related to one or few clinical features from the ceRNA network. The results showed the lncRNAs MGC12926 and LINC00937 were verified to be strongly connected with the prognosis of CM patients.


The implications of relationships between human diseases and metabolic subpathways.

  • Xia Li‎ et al.
  • PloS one‎
  • 2011‎

One of the challenging problems in the etiology of diseases is to explore the relationships between initiation and progression of diseases and abnormalities in local regions of metabolic pathways. To gain insight into such relationships, we applied the "k-clique" subpathway identification method to all disease-related gene sets. For each disease, the disease risk regions of metabolic pathways were then identified and considered as subpathways associated with the disease. We finally built a disease-metabolic subpathway network (DMSPN). Through analyses based on network biology, we found that a few subpathways, such as that of cytochrome P450, were highly connected with many diseases, and most belonged to fundamental metabolisms, suggesting that abnormalities of fundamental metabolic processes tend to cause more types of diseases. According to the categories of diseases and subpathways, we tested the clustering phenomenon of diseases and metabolic subpathways in the DMSPN. The results showed that both disease nodes and subpathway nodes displayed slight clustering phenomenon. We also tested correlations between network topology and genes within disease-related metabolic subpathways, and found that within a disease-related subpathway in the DMSPN, the ratio of disease genes and the ratio of tissue-specific genes significantly increased as the number of diseases caused by the subpathway increased. Surprisingly, the ratio of essential genes significantly decreased and the ratio of housekeeping genes remained relatively unchanged. Furthermore, the coexpression levels between disease genes and other types of genes were calculated for each subpathway in the DMSPN. The results indicated that those genes intensely influenced by disease genes, including essential genes and tissue-specific genes, might be significantly associated with the disease diversity of subpathways, suggesting that different kinds of genes within a disease-related subpathway may play significantly differential roles on the diversity of diseases caused by the corresponding subpathway.


Comparison of miRNA transcriptome of exosomes in three categories of somatic cells with derived iPSCs.

  • Chunlai Yu‎ et al.
  • Scientific data‎
  • 2023‎

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) through epigenetic manipulation. While the essential role of miRNA in reprogramming and maintaining pluripotency is well studied, little is known about the functions of miRNA from exosomes in this context. To fill this research gap,we comprehensively obtained the 17 sets of cellular mRNA transcriptomic data with 3.93 × 1010 bp raw reads and 18 sets of exosomal miRNA transcriptomic data with 2.83 × 107 bp raw reads from three categories of human somatic cells: peripheral blood mononuclear cells (PBMCs), skin fibroblasts(SFs) and urine cells (UCs), along with their derived iPSCs. Additionally, differentially expressed molecules of each category were identified and used to perform gene set enrichment analysis. Our study provides sets of comparative transcriptomic data of cellular mRNA and exosomal miRNA from three categories of human tissue with three individual biological controls in studies of iPSCs generation, which will contribute to a better understanding of donor cell variation in functional epigenetic regulation and differentiation bias in iPSCs.


Systematic Analysis of Gibberellin Pathway Components in Medicago truncatula Reveals the Potential Application of Gibberellin in Biomass Improvement.

  • Hongfeng Wang‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Gibberellins (GAs), a class of phytohormones, act as an essential natural regulator of plant growth and development. Many studies have shown that GA is related to rhizobial infection and nodule organogenesis in legume species. However, thus far, GA metabolism and signaling components are largely unknown in the model legume Medicago truncatula. In this study, a genome-wide analysis of GA metabolism and signaling genes was carried out. In total 29 components, including 8 MtGA20ox genes, 2 MtGA3ox genes, 13 MtGA2ox genes, 3 MtGID1 genes, and 3 MtDELLA genes were identified in M. truncatula genome. Expression profiles revealed that most members of MtGAox, MtGID1, and MtDELLA showed tissue-specific expression patterns. In addition, the GA biosynthesis and deactivation genes displayed a feedback regulation on GA treatment, respectively. Yeast two-hybrid assays showed that all the three MtGID1s interacted with MtDELLA1 and MtDELLA2, suggesting that the MtGID1s are functional GA receptors. More importantly, M. truncatula exhibited increased plant height and biomass by ectopic expression of the MtGA20ox1, suggesting that enhanced GA response has the potential for forage improvement.


Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae.

  • Hongli Cui‎ et al.
  • BMC genomics‎
  • 2013‎

Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression.


IRF2 contributes to myocardial infarction via regulation of GSDMD induced pyroptosis.

  • Yongxing Li‎ et al.
  • Molecular medicine reports‎
  • 2022‎

Interferon regulatory factor (IRF) 2 is a transcription factor belonging to the IRF family, which is essential for gasdermin D (GSDMD)‑induced pyroptosis. Decreasing myocardial cell pyroptosis confers protection against heart damage and cardiac dysfunction caused by myocardial infarction (MI). The aim of the present study was to investigate the involvement of IRF2 in MI and the underlying mechanism of IRF2 in pyroptosis. To mimic MI, ligation of the left anterior descending coronary artery was performed to establish an in vivo mouse model and rat cardiomyocytes H9c2 cells were cultured under hypoxic conditions to establish an in vitro model. Transthoracic echocardiography was used to assess cardiac function. Hematoxylin and eosin staining was used to observe histopathological changes in the myocardial tissue. Immunohistochemistry and western blotting were performed to detect IRF2 expression levels. TUNEL staining and flow cytometry were used to detect apoptosis in myocardial tissue and cells. Chromatin immunoprecipitation and dual luciferase reporter assay were used to verify the effect of IRF2 on GSDMD transcription. IRF2 was upregulated in MI mice. MI induced pyroptosis, as evidenced by increased GSDMD, N‑terminal GSDMD (GSDMD‑N), and cleaved (c‑) caspase‑1 levels. MI increased IL‑1β and IL‑18 levels. These alterations were alleviated by IRF2 silencing. Furthermore, in hypoxia‑treated H9c2 cells, IRF2 silencing significantly decreased the elevated levels of IL‑1β and IL‑18 and pyroptosis‑associated proteins, including GSDMD, GSDMD‑N and c‑caspase1. Moreover, in hypoxia‑treated H9c2 cells, IRF2 directly bound to the GSDMD promoter to drive GSDMD transcription and promote pyroptosis and IRF2 expression may be regulated via the hypoxia inducible factor 1 signaling pathway. In conclusion, the present results demonstrated that IRF2 is a key regulator of MI by mediating pyroptosis, which triggers GSDMD activation.


Progesterone Receptor Membrane Component 1 Mediates Progesterone-Induced Suppression of Oocyte Meiotic Prophase I and Primordial Folliculogenesis.

  • Meng Guo‎ et al.
  • Scientific reports‎
  • 2016‎

Well-timed progression of primordial folliculogenesis is essential for mammalian female fertility. Progesterone (P4) inhibits primordial follicle formation under physiological conditions; however, P4 receptor that mediates this effect and its underlying mechanisms are unclear. In this study, we used an in vitro organ culture system to show that progesterone receptor membrane component 1 (PGRMC1) mediated P4-induced inhibition of oocyte meiotic prophase I and primordial follicle formation. We found that membrane-impermeable BSA-conjugated P4 inhibited primordial follicle formation similar to that by P4. Interestingly, PGRMC1 and its partner serpine1 mRNA-binding protein 1 were highly expressed in oocytes in perinatal ovaries. Inhibition or RNA interference of PGRMC1 abolished the suppressive effect of P4 on follicle formation. Furthermore, P4-PGRMC1 interaction blocked oocyte meiotic progression and decreased intra-oocyte cyclic AMP (cAMP) levels in perinatal ovaries. cAMP analog dibutyryl cAMP reversed P4-PGRMC1 interaction-induced inhibition of meiotic progression and follicle formation. Thus, our results indicated that PGRMC1 mediated P4-induced suppression of oocyte meiotic progression and primordial folliculogenesis by decreasing intra-oocyte cAMP levels.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: