2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 416 papers

How reliable is the linear noise approximation of gene regulatory networks?

  • Philipp Thomas‎ et al.
  • BMC genomics‎
  • 2013‎

The linear noise approximation (LNA) is commonly used to predict how noise is regulated and exploited at the cellular level. These predictions are exact for reaction networks composed exclusively of first order reactions or for networks involving bimolecular reactions and large numbers of molecules. It is however well known that gene regulation involves bimolecular interactions with molecule numbers as small as a single copy of a particular gene. It is therefore questionable how reliable are the LNA predictions for these systems.


Distinct regulatory networks control toxin gene expression in elapid and viperid snakes.

  • Cassandra M Modahl‎ et al.
  • BMC genomics‎
  • 2024‎

Venom systems are ideal models to study genetic regulatory mechanisms that underpin evolutionary novelty. Snake venom glands are thought to share a common origin, but there are major distinctions between venom toxins from the medically significant snake families Elapidae and Viperidae, and toxin gene regulatory investigations in elapid snakes have been limited. Here, we used high-throughput RNA-sequencing to profile gene expression and microRNAs between active (milked) and resting (unmilked) venom glands in an elapid (Eastern Brown Snake, Pseudonaja textilis), in addition to comparative genomics, to identify cis- and trans-acting regulation of venom production in an elapid in comparison to viperids (Crotalus viridis and C. tigris).


A method for developing regulatory gene set networks to characterize complex biological systems.

  • Chayaporn Suphavilai‎ et al.
  • BMC genomics‎
  • 2015‎

Traditional approaches to studying molecular networks are based on linking genes or proteins. Higher-level networks linking gene sets or pathways have been proposed recently. Several types of gene set networks have been used to study complex molecular networks such as co-membership gene set networks (M-GSNs) and co-enrichment gene set networks (E-GSNs). Gene set networks are useful for studying biological mechanism of diseases and drug perturbations.


Target mimics: an embedded layer of microRNA-involved gene regulatory networks in plants.

  • Yijun Meng‎ et al.
  • BMC genomics‎
  • 2012‎

MicroRNAs (miRNAs) play an essential role in gene regulation in plants. At the same time, the expression of miRNA genes is also tightly controlled. Recently, a novel mechanism called "target mimicry" was discovered, providing another layer for modulating miRNA activities. However, except for the artificial target mimics manipulated for functional studies on certain miRNA genes, only one example, IPS1 (Induced by Phosphate Starvation 1)-miR399 was experimentally confirmed in planta. To date, few analyses for comprehensive identification of natural target mimics have been performed in plants. Thus, limited evidences are available to provide detailed information for interrogating the questionable issue whether target mimicry was widespread in planta, and implicated in certain biological processes.


Inferring regulatory element landscapes and gene regulatory networks from integrated analysis in eight hulless barley varieties under abiotic stress.

  • Qijun Xu‎ et al.
  • BMC genomics‎
  • 2022‎

The cis-regulatory element became increasingly important for resistance breeding. There were many DNA variations identified by resequencing. To investigate the links between the DNA variations and cis-regulatory element was the fundamental work. DNA variations in cis-regulatory elements caused phenotype variations in general.


Globally learning gene regulatory networks based on hidden atomic regulators from transcriptomic big data.

  • Ming Shi‎ et al.
  • BMC genomics‎
  • 2020‎

Genes are regulated by various types of regulators and most of them are still unknown or unobserved. Current gene regulatory networks (GRNs) reverse engineering methods often neglect the unknown regulators and infer regulatory relationships in a local and sub-optimal manner.


Functional signaling and gene regulatory networks between the oocyte and the surrounding cumulus cells.

  • Fernando H Biase‎ et al.
  • BMC genomics‎
  • 2018‎

The maturation and successful acquisition of developmental competence by an oocyte, the female gamete, during folliculogenesis is highly dependent on molecular interactions with somatic cells. Most of the cellular interactions identified, thus far, are modulated by growth factors, ions or metabolites. We hypothesized that this interaction is also modulated at the transcriptional level, which leads to the formation of gene regulatory networks between the oocyte and cumulus cells. We tested this hypothesis by analyzing transcriptome data from single oocytes and the surrounding cumulus cells collected from antral follicles employing an analytical framework to determine interdependencies at the transcript level.


Construction of small RNA-mediated gene regulatory networks in the roots of rice (Oryza sativa).

  • Xiaoxia Ma‎ et al.
  • BMC genomics‎
  • 2013‎

The root systems play essential roles for plants to anchorage to the soil, and to exploit the mineral and water resources. The molecular mechanisms underlying root development have been extensively studied to improve root system architecture, especially for the crops. Several microRNA (miRNA) families have been demonstrated to be involved in plant root development. However, whether the other small RNA (sRNA) species, which occupy a dominant portion of the plant endogenous sRNA population, possess potential roles in root development remains unclear.


Inferring and analyzing gene regulatory networks from multi-factorial expression data: a complete and interactive suite.

  • Océane Cassan‎ et al.
  • BMC genomics‎
  • 2021‎

High-throughput transcriptomic datasets are often examined to discover new actors and regulators of a biological response. To this end, graphical interfaces have been developed and allow a broad range of users to conduct standard analyses from RNA-seq data, even with little programming experience. Although existing solutions usually provide adequate procedures for normalization, exploration or differential expression, more advanced features, such as gene clustering or regulatory network inference, often miss or do not reflect current state of the art methodologies.


Genome-wide analysis of gene expression reveals gene regulatory networks that regulate chasmogamous and cleistogamous flowering in Pseudostellaria heterophylla (Caryophyllaceae).

  • Yan Luo‎ et al.
  • BMC genomics‎
  • 2016‎

Pseudostellaria heterophylla produces both closed (cleistogamous, CL) and open (chasmogamous, CH) flowers on the same individual but in different seasons. The production of CH and CL flowers might be in response to environmental changes. To better understand the molecular mechanisms of CH and CL flowering, we compared the transcriptome of the two types of flowers to examine differential gene expression patterns, and to identify gene regulatory networks that control CH and CL flowering.


High-throughput validation of ceRNA regulatory networks.

  • Hua-Sheng Chiu‎ et al.
  • BMC genomics‎
  • 2017‎

MicroRNAs (miRNAs) play multiple roles in tumor biology. Interestingly, reports from multiple groups suggest that miRNA targets may be coupled through competitive stoichiometric sequestration. Specifically, computational models predicted and experimental assays confirmed that miRNA activity is dependent on miRNA target abundance, and consequently, changes in the abundance of some miRNA targets lead to changes to the regulation and abundance of their other targets. The resulting indirect regulatory influence between miRNA targets resembles competition and has been dubbed competitive endogenous RNA (ceRNA). Recent studies have questioned the physiological relevance of ceRNA interactions, our ability to accurately predict these interactions, and the number of genes that are impacted by ceRNA interactions in specific cellular contexts.


A genome-wide cis-regulatory element discovery method based on promoter sequences and gene co-expression networks.

  • Zhen Gao‎ et al.
  • BMC genomics‎
  • 2013‎

Deciphering cis-regulatory networks has become an attractive yet challenging task. This paper presents a simple method for cis-regulatory network discovery which aims to avoid some of the common problems of previous approaches.


Nearby transposable elements impact plant stress gene regulatory networks: a meta-analysis in A. thaliana and S. lycopersicum.

  • Jan Deneweth‎ et al.
  • BMC genomics‎
  • 2022‎

Transposable elements (TE) make up a large portion of many plant genomes and are playing innovative roles in genome evolution. Several TEs can contribute to gene regulation by influencing expression of nearby genes as stress-responsive regulatory motifs. To delineate TE-mediated plant stress regulatory networks, we took a 2-step computational approach consisting of identifying TEs in the proximity of stress-responsive genes, followed by searching for cis-regulatory motifs in these TE sequences and linking them to known regulatory factors. Through a systematic meta-analysis of RNA-seq expression profiles and genome annotations, we investigated the relation between the presence of TE superfamilies upstream, downstream or within introns of nearby genes and the differential expression of these genes in various stress conditions in the TE-poor Arabidopsis thaliana and the TE-rich Solanum lycopersicum.


Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae.

  • Jun Liu‎ et al.
  • BMC genomics‎
  • 2020‎

Pseudomonas syringae is an important plant pathogen, which could adapt many different environmental conditions. Under the nutrient-limited and other stress conditions, P. syringae produces nucleotide signal molecules, i.e., guanosine tetra/pentaphosphate ((p)ppGpp), to globally regulate gene expression. Previous studies showed that (p) ppGpp played an important role in regulating virulence factors in P. syringae pv. tomato DC3000 (PstDC3000) and P. syringae pv. syringae B728a (PssB728a). Here we present a comparative transcriptomic analysis to uncover the overall effects of (p)ppGpp-mediated stringent response in P. syringae.


Distinct and overlapping gene regulatory networks in BMP- and HDAC-controlled cell fate determination in the embryonic forebrain.

  • Catharina Scholl‎ et al.
  • BMC genomics‎
  • 2012‎

Both bone morphogenetic proteins (BMPs) and histone deacetylases (HDACs) have previously been established to play a role in the development of the three major cell types of the central nervous system: neurons, astrocytes, and oligodendrocytes. We have previously established a connection between these two protein families, showing that HDACs suppress BMP-promoted astrogliogenesis in the embryonic striatum. Since HDACs act in the nucleus to effect changes in transcription, an unbiased analysis of their transcriptional targets could shed light on their downstream effects on BMP-signaling.


Genome-wide inference of regulatory networks in Streptomyces coelicolor.

  • Marlene Castro-Melchor‎ et al.
  • BMC genomics‎
  • 2010‎

The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses.


Chronic binge alcohol administration dysregulates global regulatory gene networks associated with skeletal muscle wasting in simian immunodeficiency virus-infected macaques.

  • Liz Simon‎ et al.
  • BMC genomics‎
  • 2015‎

There are more than 1 million persons living with HIV/AIDS (PLWHA) in the United States and approximately 40 % of them have a history of alcohol use disorders (AUD). Chronic heavy alcohol consumption and HIV/AIDS both result in reduced lean body mass and muscle dysfunction, increasing the incidence of comorbid conditions. Previous studies from our laboratory using rhesus macaques infected with Simian Immunodeficiency Virus (SIV) demonstrated that chronic binge alcohol (CBA) administration in the absence of antiretroviral therapy exacerbates skeletal muscle (SKM) wasting at end-stage SIV disease. The aim of this study was to characterize how CBA alters global gene regulatory networks that lead to SKM wasting at end-stage disease. Administration of intragastric alcohol or sucrose to male rhesus macaques began 3 months prior to SIV infection and continued throughout the duration of study. High-output array analysis was used to determine CBA-dependent changes in mRNA expression, miRNA expression, and promoter methylation status of SKM at end-stage disease (~10 months post-SIV) from healthy control (control), sucrose-administered, SIV-infected (SUC/SIV), and CBA-administered/SIV-infected (CBA/SIV) macaques.


Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria.

  • Dmitry A Ravcheev‎ et al.
  • BMC genomics‎
  • 2013‎

Genome scale annotation of regulatory interactions and reconstruction of regulatory networks are the crucial problems in bacterial genomics. The Lactobacillales order of bacteria collates various microorganisms having a large economic impact, including both human and animal pathogens and strains used in the food industry. Nonetheless, no systematic genome-wide analysis of transcriptional regulation has been previously made for this taxonomic group.


Construction and analysis of degradome-dependent microRNA regulatory networks in soybean.

  • Rui Wang‎ et al.
  • BMC genomics‎
  • 2019‎

Usually the microRNA (miRNA)-mediated gene regulatory network (GRN) is constructed from the investigation of miRNA expression profiling and target predictions. However, the higher/lower expression level of miRNAs does not always indicate the higher/lower level of cleavages and such analysis, thus, sometimes ignores the crucial cleavage events. In the present work, the degradome sequencing data were employed to construct the complete miRNA-mediated gene regulatory network in soybean, unlike the traditional approach starting with small RNA sequencing data.


Constructing tissue-specific transcriptional regulatory networks via a Markov random field.

  • Shining Ma‎ et al.
  • BMC genomics‎
  • 2018‎

Recent advances in sequencing technologies have enabled parallel assays of chromatin accessibility and gene expression for major human cell lines. Such innovation provides a great opportunity to decode phenotypic consequences of genetic variation via the construction of predictive gene regulatory network models. However, there still lacks a computational method to systematically integrate chromatin accessibility information with gene expression data to recover complicated regulatory relationships between genes in a tissue-specific manner.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: