Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Remote regulation of rs80245547 and rs72673891 mediated by transcription factors C-Jun and CREB1 affect GSTCD expression.

  • Jin-Xiu Li‎ et al.
  • iScience‎
  • 2023‎

Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is influenced by genetic factors. The genetic signal rs10516526 in the glutathione S-transferase C-terminal domain containing (GSTCD) gene is a highly significant and reproducible signal associated with lung function and COPD on chromosome 4q24. In this study, comprehensive bioinformatics analyses and experimental verifications were detailly implemented to explore the regulation mechanism of rs10516526 and GSTCD in COPD. The results suggested that low expression of GSTCD was associated with COPD (p = 0.010). And C-Jun and CREB1 transcription factors were found to be essential for the regulation of GSTCD by rs80245547 and rs72673891. Moreover, rs80245547T and rs72673891G had a stronger binding ability to these transcription factors, which may promote the allele-specific long-range enhancer-promoter interactions on GSTCD, thus making COPD less susceptible. Our study provides a new insight into the relationship between rs10516526, GSTCD, and COPD.


MicroRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis.

  • Albertomaria Moro‎ et al.
  • Nature cell biology‎
  • 2019‎

Vertebrate tissues exhibit mechanical homeostasis, showing stable stiffness and tension over time and recovery after changes in mechanical stress. However, the regulatory pathways that mediate these effects are unknown. A comprehensive identification of Argonaute 2-associated microRNAs and mRNAs in endothelial cells identified a network of 122 microRNA families that target 73 mRNAs encoding cytoskeletal, contractile, adhesive and extracellular matrix (CAM) proteins. The level of these microRNAs increased in cells plated on stiff versus soft substrates, consistent with homeostasis, and suppressed targets via microRNA recognition elements within the 3' untranslated regions of CAM mRNAs. Inhibition of DROSHA or Argonaute 2, or disruption of microRNA recognition elements within individual target mRNAs, such as connective tissue growth factor, induced hyper-adhesive, hyper-contractile phenotypes in endothelial and fibroblast cells in vitro, and increased tissue stiffness, contractility and extracellular matrix deposition in the zebrafish fin fold in vivo. Thus, a network of microRNAs buffers CAM expression to mediate tissue mechanical homeostasis.


Up-regulation of GSTT1 in serous ovarian cancer associated with resistance to TAXOL / carboplatin.

  • Jing Zhang‎ et al.
  • Journal of ovarian research‎
  • 2021‎

Serous ovarian cancer (SOC) is the most common women cancer and the leading cause of cancer-related mortality among the gynaecological malignancies. Although effective chemotherapeutics combined with surgery are developed for the treatment, the five-year survival rate is unsatisfactory due to chemoresistance. To overcome this shortcoming of chemotherapy, we established taxol and carboplatin resistant SOC cell lines for the understandings of the molecular and cellular mechanisms of chemoresistance. Here, we found that these chemoresistant cell lines showed less viability and proliferation, due to more cells arrested at G0/G1 phase. Glutathione-S-transferases-theta1 (GSTT1) was significantly upregulated in these chemoresistant cells, along with other chemoresistant genes. Meanwhile, GSTT1 expression was also significantly upregulated in the SOC patient tissues after taxol treatment, indicating this upregulation was physiologically relevant to chemotherapy. Further, suppression of GSTT1 expression by shRNA in SOC cell lines led to more sensitivity to drug treatment, through increasing divided cells and promoting cell death. Moreover, the expression of DNA topoisomerase 1 (Topo I) was in synergy with that of GSTT1 in the chemoresistant cells, and GSTT1 can bind to Topo I in vitro, which suggested GSTT1 could function through DNA repair mechanism during chemoresistance. In summary, our data imply that GSTT1 may be a potential biomarker or indicator of drug resistance in serous ovarian cancer.


circ_0039787 promotes cervical cancer cell tumorigenesis by regulation of the miR-877-5p-KRAS axis.

  • Xiuchao He‎ et al.
  • Aging‎
  • 2024‎

Circular RNA (circRNA) is a novel type of RNA that plays an important role in the occurrence and development of many malignant tumors. However, the potential regulatory role and molecular mechanisms of circRNAs in cervical cancer (CC) are still not clear. Here, we explored circRNAs associated with CC from the Gene Expression Omnibus (GEO) datasets GSE113696 and GSE102686. We initially identified circ_0039787, which is derived from exons 2 to 3 of the C16orf70 gene. We observed that circ_0039787 is mainly located in the cytoplasm and is more stable than its linear counterpart, C16orf70. circ_0039787 is significantly upregulated in CC tissues and cells. In addition, functional gain and loss experiments demonstrated that circ_0039787 promotes the proliferation, migration, and invasion of CC cells in vitro and the growth of CC tumors in vivo. Mechanistically, circ_0039787 promotes CC tumor progression by competitively absorbing miR-877-5p to alleviate the inhibitory effect of miR-877-5p on Kirsten Rat Sarcoma viral oncogene homolog (KRAS) expression. Overall, our results suggest that circ_0039787 could serve as a promising diagnostic biomarker and potential therapeutic target for CC patients.


CD4 T-cell transcriptome analysis reveals aberrant regulation of STAT3 and Wnt signaling pathways in rheumatoid arthritis: evidence from a case-control study.

  • Hua Ye‎ et al.
  • Arthritis research & therapy‎
  • 2015‎

Rheumatoid arthritis (RA) is a systemic autoimmune disease in which T cells play a pivotal role in the pathogenesis. Knowledge in terms of the CD4 T-cell transcriptome in RA is limited. The aim of this study was to examine the whole-genome transcription profile of CD4 T cells in RA by comparing patients with RA to healthy controls.


De novo characterization of microRNAs in oriental fruit moth Grapholita molesta and selection of reference genes for normalization of microRNA expression.

  • Xiu Wang‎ et al.
  • PloS one‎
  • 2017‎

MicroRNAs (miRNAs) are a group of endogenous non-coding small RNAs that have critical regulatory functions in almost all known biological processes at the post-transcriptional level in a variety of organisms. The oriental fruit moth Grapholita molesta is one of the most serious pests in orchards worldwide and threatens the production of Rosacea fruits. In this study, a de novo small RNA library constructed from mixed stages of G. molesta was sequenced through Illumina sequencing platform and a total of 536 mature miRNAs consisting of 291 conserved and 245 novel miRNAs were identified. Most of the conserved and novel miRNAs were detected with moderate abundance. The miRNAs in the same cluster normally showed correlated expressional profiles. A comparative analysis of the 79 conserved miRNA families within 31 arthropod species indicated that these miRNA families were more conserved among insects and within orders of closer phylogenetic relationships. The KEGG pathway analysis and network prediction of target genes indicated that the complex composed of miRNAs, clock genes and developmental regulation genes may play vital roles to regulate the developmental circadian rhythm of G. molesta. Furthermore, based on the sRNA library of G. molesta, suitable reference genes were selected and validated for study of miRNA transcriptional profile in G. molesta under two biotic and six abiotic experimental conditions. This study systematically documented the miRNA profile in G. molesta, which could lay a foundation for further understanding of the regulatory roles of miRNAs in the development and metabolism in this pest and might also suggest clues to the development of genetic-based techniques for agricultural pest control.


Human cytomegalovirus RNA2.7 inhibits RNA polymerase II (Pol II) Serine-2 phosphorylation by reducing the interaction between Pol II and phosphorylated cyclin-dependent kinase 9 (pCDK9).

  • Yujing Huang‎ et al.
  • Virologica Sinica‎
  • 2022‎

Human cytomegalovirus (HCMV) is a ubiquitous pathogen belongs to betaherpesvirus subfamily. RNA2.7 is a highly conserved long non-coding RNA accounting for more than 20% of total viral transcripts. In our study, functions of HCMV RNA2.7 were investigated by comparison of host cellular transcriptomes between cells infected with HCMV clinical strain and RNA2.7 deleted mutant. It was demonstrated that RNA polymerase II (Pol II)-dependent host gene transcriptions were significantly activated when RNA2.7 was removed during infection. A 145 ​nt-in-length motif within RNA2.7 was identified to inhibit the phosphorylation of Pol II Serine-2 (Pol II S2) by reducing the interaction between Pol II and phosphorylated cyclin-dependent kinase 9 (pCDK9). Due to the loss of Pol II S2 phosphorylation, cellular DNA pre-replication complex (pre-RC) factors, including Cdt1 and Cdc6, were significantly decreased, which prevented more cells from entering into S phase and facilitated viral DNA replication. Our results provide new insights of HCMV RNA2.7 functions in regulation of host cellular transcription.


Genome-wide analysis of long noncoding RNA profiling in PRRSV-infected PAM cells by RNA sequencing.

  • Jing Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

Porcine reproductive and respiratory syndrome (PRRS) is a major threat to the global swine industry and causes tremendous economic losses. Its causative agent, porcine reproductive and respiratory syndrome virus (PRRSV), primarily infects immune cells, such as porcine alveolar macrophages and dendritic cells. PRRSV infection results in immune suppression, antibody-dependent enhancement, and persistent infection. Highly pathogenic strains in China cause high fever and severe inflammatory responses in the lungs. However, the pathogenesis of PRRSV is still not fully understood. In this study, we analysed the long noncoding RNA (lncRNA) and mRNA expression profiles of the HP-PRRSV GSWW15 and the North American strain FL-12 in infected porcine alveolar macrophages (PAMs) at 12 and 24 hours post-infection. We predicted 12,867 novel lncRNAs, 299 of which were differentially expressed after viral infection. The Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses of the genes adjacent to lncRNAs showed that they were enriched in pathways related to viral infection and immune response, indicating that lncRNAs might play regulatory roles in virus-host interactions. Our study provided information about lncRNAs in the porcine immune system and offers new insights into the pathogenic mechanism of PRRSV infection and novel antiviral therapy development.


YTHDF1 Attenuates TBI-Induced Brain-Gut Axis Dysfunction in Mice.

  • Peizan Huang‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The brain-gut axis (BGA) is a significant bidirectional communication pathway between the brain and gut. Traumatic brain injury (TBI) induced neurotoxicity and neuroinflammation can affect gut functions through BGA. N6-methyladenosine (m6A), as the most popular posttranscriptional modification of eukaryotic mRNA, has recently been identified as playing important roles in both the brain and gut. However, whether m6A RNA methylation modification is involved in TBI-induced BGA dysfunction is not clear. Here, we showed that YTHDF1 knockout reduced histopathological lesions and decreased the levels of apoptosis, inflammation, and oedema proteins in brain and gut tissues in mice after TBI. We also found that YTHDF1 knockout improved fungal mycobiome abundance and probiotic (particularly Akkermansia) colonization in mice at 3 days post-CCI. Then, we identified the differentially expressed genes (DEGs) in the cortex between YTHDF1-knockout and WT mice. These genes were primarily enriched in the regulation of neurotransmitter-related neuronal signalling pathways, inflammatory signalling pathways, and apoptotic signalling pathways. This study reveals that the ITGA6-mediated cell adhesion molecule signalling pathway may be the key feature of m6A regulation in TBI-induced BGA dysfunction. Our results suggest that YTHDF1 knockout could attenuate TBI-induced BGA dysfunction.


Prenatal stress modulates HPA axis homeostasis of offspring through dentate TERT independently of glucocorticoids receptor.

  • Meng-Ying Liu‎ et al.
  • Molecular psychiatry‎
  • 2023‎

In response to stressful events, the hypothalamic-pituitary-adrenal (HPA) axis is activated, and consequently glucocorticoids are released by the adrenal gland into the blood circulation. A large body of research has illustrated that excessive glucocorticoids in the hippocampus exerts negative feedback regulation of the HPA axis through glucocorticoid receptor (GR), which is critical for the homeostasis of the HPA axis. Maternal prenatal stress causes dysfunction of the HPA axis feedback mechanism in their offspring in adulthood. Here we report that telomerase reverse transcriptase (TERT) gene knockout causes hyperactivity of the HPA axis without hippocampal GR deficiency. We found that the level of TERT in the dentate gyrus (DG) of the hippocampus during the developmental stage determines the responses of the HPA axis to stressful events in adulthood through modulating the excitability of the dentate granular cells (DGCs) rather than the expression of GR. Our study also suggests that the prenatal high level of glucocorticoids exposure-induced hypomethylation at Chr13:73764526 in the first exon of mouse Tert gene accounted for TERT deficiency in the DG and HPA axis abnormality in the adult offspring. This study reveals a novel GR-independent mechanism underlying prenatal stress-associated HPA axis impairment, providing a new angle for understanding the mechanisms for maintaining HPA axis homeostasis.


Long intergenic non-protein coding RNA 115 (LINC00115) aggravates retinoblastoma progression by targeting microRNA miR-489-3p that downregulates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2).

  • Fang Ji‎ et al.
  • Bioengineered‎
  • 2022‎

Long non-coding RNAs (lncRNAs) are key regulators of cancer. However, the role of long intergenic non-protein coding RNA 115 (LINC00115) in the regulation of retinoblastoma (RB) has not yet been studied. The expression levels of LINC00115, microRNA (miR)-489-3p, and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2) in RB tissues or cells were detected by quantitative reverse transcription-polymerase chain reaction. The proliferation and migration of cells were detected by the cell counting kit-8 and Transwell assays. Luciferase reporter gene analysis and RNA immunoprecipitation assay were used to validate the target gene interactions predicted by starBase. A xenograft tumor experiment was conducted to validate the in vivo outcomes. The expression levels of LINC00115 and PFKFB2 in RB tissues were higher than those in normal tissues, while miR-489-3p showed the opposite trend. Silencing of LINC00115 inhibited the proliferation and migration of SO-RB50 and HXO-RB44 cells. An inhibitory or facilitated effect on RB tumorigenesis was observed following PFKFB2 silencing or miR-489-3p overexpression, respectively. Moreover, LINC00115 aggravated RB progression by targeting miR-489-3p, which downregulated PFKFB2. This finding improves our understanding of the relationship between LINC00115 and RB. Furthermore, miR-489-3p and PFKFB2 may be used as potential targets for RB prevention and treatment.


Modification of the second translation initiation site restricts the replication of foot-and-mouth disease virus in PK-15 cells.

  • Hong Yuan‎ et al.
  • Applied microbiology and biotechnology‎
  • 2020‎

The translation initiation of foot-and-mouth disease virus (FMDV) occurs at two alternative initiation sites (Lab AUG and Lb AUG). Usually, the Lb AUG is more favorably used to initiate protein synthesis than the Lab AUG. To explore the effect of Lb AUG on FMDV replication and obtain FMDV with restricted replication, this initiation codon was mutated to a variety of non-AUG codons (UGG, AUC, CUG, and AAA). Fortunately, the modifications did not prevent viral viability but influenced replication characteristics of some FMDV mutants in a cell-specific manner, as was shown by the similar replication in BHK-21 cells and delayed growth kinetics in PK-15 cells. This attenuated phenotype of FMDV mutants in PK-15 cells was found to be correlated with reduced abilities to cleave eIF4GI and suppress interference (IFN) expression. As leader (L) protein was reported to be responsible for eIF4GI cleavage and inhibition of IFN expression, the in vivo L protein synthesis was examined during the infection of FMDV mutants. Our results showed that not only the total yield of L proteins was severely influenced but also the individual yield of L protein was seen to be affected, which implied that both the relative usage of the two initiation sites and overall translation efficiency were changed by Lb AUG modifications. In addition, the in vitro translation activity was also negatively regulated by Lb AUG mutations. Collectively, these findings suggested that the restricted replications of Lb AUG-modified FMDVs were related to the delayed eIF4GI cleavage and decreased ability to block IFN expression but were mainly determined by the inefficient translation initiation. FMDVs precisely with modifications of Lb AUG initiation codon may represent safer seed viruses for vaccine production. KEY POINTS: • The polyprotein translation of FMDV initiates at two alternative initiation sites (Lab AUG and Lb AUG). In order to explore the effect of Lb AUG on FMDV replication and obtain FMDV with restricted replication, the Lb initiation AUG was mutated to a variety of non-AUG codons (UGG, AUC, CUG, and AAA), and four FMDV mutants with Lb AUG modification were generated. • We found that partial FMDV mutants grew almost as well as WT virus in BHK-21 cells, a typical cell line used for FMD vaccine production, but displayed impaired replication in IFN-competent PK-15 cells. • The attenuation of mutant FMDVs in PK-15 cells was found to be correlated with delayed eIF4GI cleavage and decreased ability to block IFN expression. • We proved that the attenuated phenotype of Lb AUG-modified FMDVs was mainly determined by the inefficient translation initiation, as demonstrated by the decrease of total yield of L proteins and individual production of L protein. • We successfully generated genetically engineered FMDV with attenuated phenotype. The approach of precise engineering of FMDV with the modification of initiation codon provides a safe platform to produce inactivated antigen vaccines.


Transforming growth factor-β challenge alters the N-, O-, and glycosphingolipid glycomes in PaTu-S pancreatic adenocarcinoma cells.

  • Jing Zhang‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis and high mortality. Transforming growth factor-β (TGF-β) plays a key role in PDAC tumor progression, which is often associated with aberrant glycosylation. However, how PDAC cells respond to TGF-β and the role of glycosylation therein is not well known. Here, we investigated the TGF-β-mediated response and glycosylation changes in the PaTu-8955S (PaTu-S) cell line deficient in SMA-related and MAD-related protein 4 (SMAD4), a signal transducer of the TGF-β signaling. PaTu-S cells responded to TGF-β by upregulating SMAD2 phosphorylation and target gene expression. We found that TGF-β induced expression of the mesenchymal marker N-cadherin but did not significantly affect epithelial marker E-cadherin expression. We also examined differences in N-glycans, O-glycans, and glycosphingolipid-linked glycans in PaTu-S cells upon TGF-β stimulation. TGF-β treatment primarily induced N-glycome aberrations involving elevated levels of branching, core fucosylation, and sialylation in PaTu-S cells, in agreement with TGF-β-induced changes in the expression of glycosylation-associated genes. In addition, we observed differences in O glycosylation and glycosphingolipid glycosylation profiles after TGF-β treatment, including lower levels of sialylated Tn antigen and neoexpression of globosides. Furthermore, the expression of transcription factor sex-determining region Y-related high-mobility group box 4 was upregulated upon TGF-β stimulation, and its depletion blocked TGF-β-induced N-glycomic changes. Thus, TGF-β-induced N-glycosylation changes can occur in a sex-determining region Y-related high-mobility group box 4-dependent and SMAD4-independent manner in the pancreatic PaTu-S cancer cell line. Our results open up avenues to study the relevance of glycosylation in TGF-β signaling in SMAD4-inactivated PDAC.


Potential Target miR-455 Delaying Arterial Stenosis Progression Through PTEN.

  • Ruoran Lin‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2021‎

Background: Vascular smooth muscle cells (VSMC) underwent phenotypic switching upon stimulation signals, and this is the prerequisite for their proliferation and migration. Previous work revealed that miR-455 may be involved in vascular stenosis. Thus, this study aimed to explore potential targets and mechanisms underlying the dynamics of miR-455 in vascular stenosis. Methods: miR-455 and PTEN expression levels were studied in normal and stenosis tissue, as well as in VSMC in proliferation model. Manipulating miR-455 expression levels was achieved by transfection of either miR-455 mimic or inhibitor, and its effect on cell proliferation was studied by CCK-8 assay. Its effect on gene expression was studied by RT-qPCR and western blot. The expression regulation mechanism was studied by luciferase reporter system. Finally, the effect of miR-455 on regulating vascular stenosis was studied using a rat balloon-injured carotid artery stenosis model. Results: High expression levels of miR-455 were detected in both stenosis arterial tissues and VSMC proliferation models. In contrast, the expression levels of PTEN were downregulated in these systems. miR-455 transfected VSMC showed higher levels of proliferation and decreased levels of PTEN. Potential binding sites between miR-455 and PTEN 3'UTR were predicted and confirmed. NF-kB p65 was found to bind directly on miR-455 promoter region and regulate its transcription. The progression of arterial stenosis could be delayed by introducing miR-455 antagomir. Conclusions: The p65/miR-455/PTEN signaling pathway plays a crucial role in regulating VSMC proliferation and vascular stenosis. This indicated that miR-455 is a novel target that would help improve treatment outcomes in patients suffering from vascular stenosis.


An antibody-based proximity labeling map reveals mechanisms of SARS-CoV-2 inhibition of antiviral immunity.

  • Yuehui Zhang‎ et al.
  • Cell chemical biology‎
  • 2022‎

The global epidemic caused by the coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in the infection of over 200 million people. To extend the knowledge of interactions between SARS-CoV-2 and humans, we systematically investigate the interactome of 29 viral proteins in human cells by using an antibody-based TurboID assay. In total, 1,388 high-confidence human proximal proteins with biotinylated sites are identified. Notably, we find that SARS-CoV-2 manipulates the antiviral and immune responses. We validate that the membrane protein ITGB1 associates angiotensin-converting enzyme 2 (ACE2) to mediate SARS-CoV-2 entry. Moreover, we reveal that SARS-CoV-2 proteins inhibit activation of the interferon pathway through the mitochondrial protein mitochondrial antiviral-signaling protein (MAVS) and the methyltransferase SET domain containing 2, histone lysine methyltransferase (SETD2). We propose 111 potential drugs for the clinical treatment of coronavirus disease 2019 (COVID-19) and identify three compounds that significantly inhibit the replication of SARS-CoV-2. The proximity labeling map of SARS-CoV-2 and humans provides a resource for elucidating the mechanisms of viral infection and developing drugs for COVID-19 treatment.


Long noncoding RNA SMUL suppresses SMURF2 production-mediated muscle atrophy via nonsense-mediated mRNA decay.

  • Bolin Cai‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2021‎

As the world population grows, muscle atrophy leading to muscle wasting could become a bigger risk. Long noncoding RNAs (lncRNAs) are known to play important roles in muscle growth and muscle atrophy. Meanwhile, it has recently come to light that many putative small open reading frames (sORFs) are hidden in lncRNAs; however, their translational capabilities and functions remain unclear. In this study, we uncovered 104 myogenic-associated lncRNAs translated, in at least a small peptide, by integrated transcriptome and proteomic analyses. Furthermore, an upstream ORF (uORF) regulatory network was constructed, and a novel muscle atrophy-associated lncRNA named SMUL (Smad ubiquitin regulatory factor 2 [SMURF2] upstream lncRNA) was identified. SMUL was highly expressed in skeletal muscle, and its expression level was downregulated during myoblast differentiation. SMUL promoted myoblast proliferation and suppressed differentiation in vitro. In vivo, SMUL induced skeletal muscle atrophy and promoted a switch from slow-twitch to fast-twitch fibers. In the meantime, translation of the SMUL sORF disrupted the stability of SMURF2 mRNA. Mechanistically, SMUL restrained SMURF2 production via nonsense-mediated mRNA decay (NMD), participating in the regulation of the transforming growth factor β (TGF-β)/SMAD pathway and further regulating myogenesis and muscle atrophy. Taken together, these results suggest that SMUL could be a novel therapeutic target for muscle atrophy.


Cytosolic DNA accumulation promotes breast cancer immunogenicity via a STING-independent pathway.

  • Jing Zhang‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2023‎

Immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, ICB alone has demonstrated only benefit in a small subset of patients with breast cancer. Recent studies have shown that agents targeting DNA damage response improve the efficacy of ICB and promote cytosolic DNA accumulation. However, recent clinical trials have shown that these agents are associated with hematological toxicities. More effective therapeutic strategies are urgently needed.


Opposing USP19 splice variants in TGF-β signaling and TGF-β-induced epithelial-mesenchymal transition of breast cancer cells.

  • Jing Zhang‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2023‎

Ubiquitin-specific protease (USP)19 is a deubiquitinating enzyme that regulates the stability and function of multiple proteins, thereby controlling various biological responses. The alternative splicing of USP19 results in the expression of two major encoded variants that are localized to the endoplasmic reticulum (ER) (USP19-ER) and cytoplasm (USP19-CY). The importance of alternative splicing for the function of USP19 remains unclear. Here, we demonstrated that USP19-CY promotes TGF-β signaling by directly interacting with TGF-β type I receptor (TβRI) and protecting it from degradation at the plasma membrane. In contrast, USP19-ER binds to and sequesters TβRI in the ER. By decreasing cell surface TβRI levels, USP19-ER inhibits TGF-β/SMAD signaling in a deubiquitination-independent manner. Moreover, USP19-ER inhibits TGF-β-induced epithelial-mesenchymal transition (EMT), whereas USP19-CY enhances EMT, as well as the migration and extravasation of breast cancer cells. Furthermore, USP19-CY expression is correlated with poor prognosis and is higher in breast cancer tissues than in adjacent normal tissues. Notably, the splicing modulator herboxidiene inhibits USP19-CY, increases USP19-ER expression and suppresses breast cancer cell migration. Targeting USP19 splicing or its deubiquitinating activity may have potential therapeutic effects on breast cancer.


TMCO1-mediated Ca2+ leak underlies osteoblast functions via CaMKII signaling.

  • Jianwei Li‎ et al.
  • Nature communications‎
  • 2019‎

Transmembrane and coiled-coil domains 1 (TMCO1) is a recently identified Ca2+ leak channel in the endoplasmic reticulum. TMCO1 dysfunction in humans is associated with dysmorphism, mental retardation, glaucoma and the occurrence of cancer. Here we show an essential role of TMCO1 in osteogenesis mediated by local Ca2+/CaMKII signaling in osteoblasts. TMCO1 levels were significantly decreased in bone from both osteoporosis patients and bone-loss mouse models. Tmco1-/- mice exhibited loss of bone mass and altered microarchitecture characteristic of osteoporosis. In the absence of TMCO1, decreased HDAC4 phosphorylation resulted in nuclear enrichment of HADC4, which leads to deacetylation and degradation of RUNX2, the master regulator of osteogenesis. We further demonstrate that TMCO1-mediated Ca2+ leak provides local Ca2+ signals to activate the CaMKII-HDAC4-RUNX2 signaling axis. The establishment of TMCO1 as a pivotal player in osteogenesis uncovers a novel potential therapeutic target for ameliorating osteoporosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: