Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Gastrula organiser and embryonic patterning in the mouse.

  • Lorraine Robb‎ et al.
  • Seminars in cell & developmental biology‎
  • 2004‎

Embryonic patterning of the mouse during gastrulation and early organogenesis engenders the specification of anterior versus posterior structures and body laterality by the interaction of signalling and modulating activities. A group of cells in the mouse gastrula, characterised by the expression of a repertoire of "organiser" genes, acts as a source and the conduit for allocation of the axial mesoderm, floor plate and definitive endoderm. The organiser and its derivatives provide the antagonistic activity that modulates WNT and TGFbeta signalling. Recent findings show that the organiser activity is augmented by morphogenetic activity of the extraembryonic and embryonic endoderm, suggesting embryonic patterning is not solely the function of the organiser.


Spatial Transcriptome for the Molecular Annotation of Lineage Fates and Cell Identity in Mid-gastrula Mouse Embryo.

  • Guangdun Peng‎ et al.
  • Developmental cell‎
  • 2016‎

Gastrulation of the mouse embryo entails progressive restriction of lineage potency and the organization of the lineage progenitors into a body plan. Here we performed a high-resolution RNA sequencing analysis on single mid-gastrulation mouse embryos to collate a spatial transcriptome that correlated with the regionalization of cell fates in the embryo. 3D rendition of the quantitative data enabled the visualization of the spatial pattern of all expressing genes in the epiblast in a digital whole-mount in situ format. The dataset also identified genes that (1) are co-expressed in a specific cell population, (2) display similar global pattern of expression, (3) have lineage markers, (4) mark domains of transcriptional and signaling activity associated with cell fates, and (5) can be used as zip codes for mapping the position of single cells isolated from the mid-gastrula stage embryo and the embryo-derived stem cells to the equivalent epiblast cells for delineating their prospective cell fates.


The transcriptional and functional properties of mouse epiblast stem cells resemble the anterior primitive streak.

  • Yoji Kojima‎ et al.
  • Cell stem cell‎
  • 2014‎

Mouse epiblast stem cells (EpiSCs) can be derived from a wide range of developmental stages. To characterize and compare EpiSCs with different origins, we derived a series of EpiSC lines from pregastrula stage to late-bud-stage mouse embryos. We found that the transcriptomes of these cells are hierarchically distinct from those of the embryonic stem cells, induced pluripotent stem cells (iPSCs), and epiblast/ectoderm. The EpiSCs display globally similar gene expression profiles irrespective of the original developmental stage of the source tissue. They are developmentally similar to the ectoderm of the late-gastrula-stage embryo and behave like anterior primitive streak cells when differentiated in vitro and in vivo. The EpiSC lines that we derived can also be categorized based on a correlation between gene expression signature and predisposition to differentiate into particular germ-layer derivatives. Our findings therefore highlight distinct identifying characteristics of EpiSCs and provide a foundation for further examination of EpiSC properties and potential.


Time space and single-cell resolved tissue lineage trajectories and laterality of body plan at gastrulation.

  • Ran Wang‎ et al.
  • Nature communications‎
  • 2023‎

Understanding of the molecular drivers of lineage diversification and tissue patterning during primary germ layer development requires in-depth knowledge of the dynamic molecular trajectories of cell lineages across a series of developmental stages of gastrulation. Through computational modeling, we constructed at single-cell resolution, a spatio-temporal transcriptome of cell populations in the germ-layers of gastrula-stage mouse embryos. This molecular atlas enables the inference of molecular network activity underpinning the specification and differentiation of the germ-layer tissue lineages. Heterogeneity analysis of cellular composition at defined positions in the epiblast revealed progressive diversification of cell types. The single-cell transcriptome revealed an enhanced BMP signaling activity in the right-side mesoderm of late-gastrulation embryo. Perturbation of asymmetric BMP signaling activity at late gastrulation led to randomization of left-right molecular asymmetry in the lateral mesoderm of early-somite-stage embryo. These findings indicate the asymmetric BMP activity during gastrulation may be critical for the symmetry breaking process.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: