Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

Galectin-3 Induces a Pro-degradative/inflammatory Gene Signature in Human Chondrocytes, Teaming Up with Galectin-1 in Osteoarthritis Pathogenesis.

  • Daniela Weinmann‎ et al.
  • Scientific reports‎
  • 2016‎

Inflammatory chemo- and cytokines and matrix-degrading proteases underlie the progression of osteoarthritis (OA). Aiming to define upstream regulators for these disease markers, we pursued initial evidence for an upregulation of members of the adhesion/growth-regulatory galectin family. Immunohistochemical localization of galectin-3 (Gal-3) in sections of human cartilage with increasing levels of degeneration revealed a linear correlation reaching a chondrocyte positivity of 60%. Presence in situ was cytoplasmic, the lectin was secreted from OA chondrocytes in culture and binding of Gal-3 yielded lactose-inhibitable surface staining. Exposure of cells to the lectin led to enhanced gene expression and secretion of functional disease markers. Genome-wide transcriptomic analysis broadened this result to reveal a pro-degradative/inflammatory gene signature under the control of NF-κB. Fittingly, targeting this route of activation by inhibitors impaired the unfavourable response to Gal-3 binding, as also seen by shortening the lectin's collagen-like repeat region. Gal-3's activation profile overlaps with that of homodimeric galectin-1 (Gal-1) and also has distinctive (supplementing) features. Tested at subsaturating concentrations in a mixture, we found cooperation between the two galectins, apparently able to team up to promote OA pathogenesis. In summary, our results suggest that a network of endogenous lectins is relevant for initiating this process cascade.


Influence of protein (human galectin-3) design on aspects of lectin activity.

  • Gabriel García Caballero‎ et al.
  • Histochemistry and cell biology‎
  • 2020‎

The concept of biomedical significance of the functional pairing between tissue lectins and their glycoconjugate counterreceptors has reached the mainstream of research on the flow of biological information. A major challenge now is to identify the principles of structure-activity relationships that underlie specificity of recognition and the ensuing post-binding processes. Toward this end, we focus on a distinct feature on the side of the lectin, i.e. its architecture to present the carbohydrate recognition domain (CRD). Working with a multifunctional human lectin, i.e. galectin-3, as model, its CRD is used in protein engineering to build variants with different modular assembly. Hereby, it becomes possible to compare activity features of the natural design, i.e. CRD attached to an N-terminal tail, with those of homo- and heterodimers and the tail-free protein. Thermodynamics of binding disaccharides proved full activity of all proteins at very similar affinity. The following glycan array testing revealed maintained preferential contact formation with N-acetyllactosamine oligomers and histo-blood group ABH epitopes irrespective of variant design. The study of carbohydrate-inhibitable binding of the test panel disclosed up to qualitative cell-type-dependent differences in sections of fixed murine epididymis and especially jejunum. By probing topological aspects of binding, the susceptibility to inhibition by a tetravalent glycocluster was markedly different for the wild-type vs the homodimeric variant proteins. The results teach the salient lesson that protein design matters: the type of CRD presentation can have a profound bearing on whether basically suited oligosaccharides, which for example tested positively in an array, will become binding partners in situ. When lectin-glycoconjugate aggregates (lattices) are formed, their structural organization will depend on this parameter. Further testing (ga)lectin variants will thus be instrumental (i) to define the full range of impact of altering protein assembly and (ii) to explain why certain types of design have been favored during the course of evolution, besides opening biomedical perspectives for potential applications of the novel galectin forms.


Galectin-8 induces functional disease markers in human osteoarthritis and cooperates with galectins-1 and -3.

  • Daniela Weinmann‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2018‎

The reading of glycan-encoded signals by tissue lectins is considered a major route of the flow of biological information in many (patho)physiological processes. The arising challenge for current research is to proceed from work on a distinct protein to family-wide testing of lectin function. Having previously identified homodimeric galectin-1 and chimera-type galectin-3 as molecular switches in osteoarthritis progression, we here provide proof-of-principle evidence for an intra-network cooperation of galectins with three types of modular architecture. We show that the presence of tandem-repeat-type galectin-8 significantly correlated with cartilage degeneration and that it is secreted by osteoarthritic chondrocytes. Glycan-inhibitable surface binding of galectin-8 to these cells increased gene transcription and the secretion of functional disease markers. The natural variant galectin-8 (F19Y) was less active than the prevalent form. Genome-wide array analysis revealed induction of a pro-degradative/inflammatory gene signature, largely under control of NF-κB signaling. This signature overlapped with respective gene-expression patterns elicited by galectins-1 and -3, but also presented supplementary features. Functional assays with mixtures of galectins that mimic the pathophysiological status unveiled cooperation between the three galectins. Our findings shape the novel concept to consider individual galectins as part of a so far not realized teamwork in osteoarthritis pathogenesis, with relevance beyond this disease.


Crystallization of a human galectin-3 variant with two ordered segments in the shortened N-terminal tail.

  • Andrea Flores-Ibarra‎ et al.
  • Scientific reports‎
  • 2018‎

Among members of the family of adhesion/growth-regulatory galectins, galectin-3 (Gal-3) bears a unique modular architecture. A N-terminal tail (NT) consisting of the N-terminal segment (NTS) and nine collagen-like repeats is linked to the canonical lectin domain. In contrast to bivalent proto- and tandem-repeat-type galectins, Gal-3 is monomeric in solution, capable to self-associate in the presence of bi- to multivalent ligands, and the NTS is involved in cellular compartmentalization. Since no crystallographic information on Gal-3 beyond the lectin domain is available, we used a shortened variant with NTS and repeats VII-IX. This protein crystallized as tetramers with contacts between the lectin domains. The region from Tyr101 (in repeat IX) to Leu114 (in the CRD) formed a hairpin. The NTS extends the canonical β-sheet of F1-F5 strands with two new β-strands on the F face. Together, crystallographic and SAXS data reveal a mode of intramolecular structure building involving the highly flexible Gal-3's NT.


Thermodynamic Switch in Binding of Adhesion/Growth Regulatory Human Galectin-3 to Tumor-Associated TF Antigen (CD176) and MUC1 Glycopeptides.

  • Maria C Rodriguez‎ et al.
  • Biochemistry‎
  • 2015‎

A shift to short-chain glycans is an observed change in mucin-type O-glycosylation in premalignant and malignant epithelia. Given the evidence that human galectin-3 can interact with mucins and also weakly with free tumor-associated Thomsen-Friedenreich (TF) antigen (CD176), the study of its interaction with MUC1 (glyco)peptides is of biomedical relevance. Glycosylated MUC1 fragments that carry the TF antigen attached through either Thr or Ser side chains were synthesized using standard Fmoc-based automated solid-phase peptide chemistry. The dissociation constants (Kd) for interaction of galectin-3 and the glycosylated MUC1 fragments measured by isothermal titration calorimetry decreased up to 10 times in comparison to that of the free TF disaccharide. No binding was observed for the nonglycosylated control version of the MUC1 peptide. The most notable feature of the binding of MUC1 glycopeptides to galectin-3 was a shift from a favorable enthalpy to an entropy-driven binding process. The comparatively diminished enthalpy contribution to the free energy (ΔG) was compensated by a considerable gain in the entropic term. (1)H-(15)N heteronuclear single-quantum coherence spectroscopy nuclear magnetic resonance data reveal contact at the canonical site mainly by the glycan moiety of the MUC1 glycopeptide. Ligand-dependent differences in binding affinities were also confirmed by a novel assay for screening of low-affinity glycan-lectin interactions based on AlphaScreen technology. Another key finding is that the glycosylated MUC1 peptides exhibited activity in a concentration-dependent manner in cell-based assays revealing selectivity among human galectins. Thus, the presentation of this tumor-associated carbohydrate ligand by the natural peptide scaffold enhances its affinity, highlighting the significance of model studies of human lectins with synthetic glycopeptides.


Studying the Structural Significance of Galectin Design by Playing a Modular Puzzle: Homodimer Generation from Human Tandem-Repeat-Type (Heterodimeric) Galectin-8 by Domain Shuffling.

  • Anna-Kristin Ludwig‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2017‎

Tissue lectins are emerging (patho)physiological effectors with broad significance. The capacity of adhesion/growth-regulatory galectins to form functional complexes with distinct cellular glycoconjugates is based on molecular selection of matching partners. Engineering of variants by changing the topological display of carbohydrate recognition domains (CRDs) provides tools to understand the inherent specificity of the functional pairing. We here illustrate its practical implementation in the case of human tandem-repeat-type galectin-8 (Gal-8). It is termed Gal-8 (NC) due to presence of two different CRDs at the N- and C-terminal positions. Gal-8N exhibits exceptionally high affinity for 3'-sialylated/sulfated β-galactosides. This protein is turned into a new homodimer, i.e., Gal-8 (NN), by engineering. The product maintained activity for lactose-inhibitable binding of glycans and glycoproteins. Preferential association with 3'-sialylated/sulfated (and 6-sulfated) β-galactosides was seen by glycan-array analysis when compared to the wild-type protein, which also strongly bound to ABH-type epitopes. Agglutination of erythrocytes documented functional bivalency. This result substantiates the potential for comparative functional studies between the variant and natural Gal-8 (NC)/Gal-8N.


Galectin-1 is a diagnostic marker involved in thyroid cancer progression.

  • Vanessa Arcolia‎ et al.
  • International journal of oncology‎
  • 2017‎

Fine-needle aspiration (FNA) is the most commonly used pre-operative technique for diagnosis of malignant thyroid tumor. However, many benign lesions, with indeterminate diagnosis following FNA, are referred to surgery. Based on multifunctionality of the endogenous galectin-1, we aimed to assess its status for early diagnosis of thyroid cancer. Immunohistochemistry for galectin-1 and -3 was performed on a clinical series of 69 cases of thyroid lesions. Galectin-1 expression was further examined in two additional tissue microarrays (TMA) composed of 66 follicular adenomas and 66 papillary carcinomas in comparison to galectin-3 and cytokeratin-19 (CK19). In addition, a knockdown of galectin-1 in papillary (TPC-1) and anaplastic (8505C) thyroid cancer cell lines was achieved by lentiviral transduction for in vitro experiments. A murine orthotopic thyroid cancer model was used to investigate tumor growth and metastatic ability. Immunohistochemical analyses of galectin-1 and -3 in the series of 69 cases of thyroid lesions revealed that galectin-1 was completely absent in the epithelial compartment of all benign thyroid lesions. Levels of both galectins significantly increased in the cytoplasmic compartment of malignant thyroid cells. Galectin-1 expression in the TMA yielded an excellent specificity (97%), while galectin-3 and CK19 presented a higher sensitivity (>97%) in discriminating benign from malignant thyroid lesions. In vitro experiments revealed that migration was negatively affected in TPC-1 galectin-1 knockdown (KD) cells, and that proliferation and invasion capacity of 8505C cells decreased after galectin-1 KD. Moreover, an orthotopic mouse model displayed a lower rate of tumor development with galectin-1 KD thyroid anaplastic cancer cells than in the control. Our findings support the introduction of galectin-1 as a reliable diagnostic marker for thyroid carcinomas. Its involvement in cell proliferation, migration, invasion and tumor growth also intimate functional involvement of galectin-1 in the progression of thyroid carcinoma, suggesting its potential as a therapeutic target.


Human galectin‑3: Molecular switch of gene expression in dermal fibroblasts in vitro and of skin collagen organization in open wounds and tensile strength in incisions in vivo.

  • Peter Gál‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Understanding the molecular and cellular processes in skin wound healing can pave the way for devising innovative concepts by turning the identified natural effectors into therapeutic tools. Based on the concept of broad‑scale engagement of members of the family of galactoside‑binding lectins (galectins) in pathophysiological processes, such as cancer or tissue repair/regeneration, the present study investigated the potential of galectins‑1 (Gal‑1) and ‑3 (Gal‑3) in wound healing. Human dermal fibroblasts, which are key cells involved in skin wound healing, responded to galectin exposure (Gal‑1 at 300 or Gal‑3 at 600 ng/ml) with selective changes in gene expression among a panel of 84 wound‑healing‑related genes, as well as remodeling of the extracellular matrix. In the case of Gal‑3, positive expression of Ki67 and cell number increased when using a decellularized matrix produced by Gal‑3‑treated fibroblasts as substrate for culture of interfollicular keratinocytes. In vivo wounds were topically treated with 20 ng/ml Gal‑1 or ‑3, and collagen score was found to be elevated in excisional wound repair in rats treated with Gal‑3. The tensile strength measured in incisions was significantly increased from 79.5±17.5 g/mm2 in controls to 103.1±21.4 g/mm2 after 21 days of healing. These data warrant further testing mixtures of galectins and other types of compounds, for example a combination of galectins and TGF‑β1.


Simulating cellular galectin networks by mixing galectins in vitro reveals synergistic activity.

  • Ruud P M Dings‎ et al.
  • Biochemistry and biophysics reports‎
  • 2021‎

Even though members of the family of adhesion/growth-regulatory galectins are increasingly detected to be co-expressed, they are still being routinely tested separately. The recent discovery of heterodimer formation among galectins-1, -3, and -7 in mixtures prompts further study of their functional activities in mixtures.


Imitating evolution's tinkering by protein engineering reveals extension of human galectin-7 activity.

  • Anna-Kristin Ludwig‎ et al.
  • Histochemistry and cell biology‎
  • 2021‎

Wild-type lectins have distinct types of modular design. As a step to explain the physiological importance of their special status, hypothesis-driven protein engineering is used to generate variants. Concerning adhesion/growth-regulatory galectins, non-covalently associated homodimers are commonly encountered in vertebrates. The homodimeric galectin-7 (Gal-7) is a multifunctional context-dependent modulator. Since the possibility of conversion from the homodimer to hybrids with other galectin domains, i.e. from Gal-1 and Gal-3, has recently been discovered, we designed Gal-7-based constructs, i.e. stable (covalently linked) homo- and heterodimers. They were produced and purified by affinity chromatography, and the sugar-binding activity of each lectin unit proven by calorimetry. Inspection of profiles of binding of labeled galectins to an array-like platform with various cell types, i.e. sections of murine epididymis and jejunum, and impact on neuroblastoma cell proliferation revealed no major difference between natural and artificial (stable) homodimers. When analyzing heterodimers, acquisition of altered properties was seen. Remarkably, binding properties and activity as effector can depend on the order of arrangement of lectin domains (from N- to C-termini) and on the linker length. After dissociation of the homodimer, the Gal-7 domain can build new functionally active hybrids with other partners. This study provides a clear direction for research on defining the full range of Gal-7 functionality and offers the perspective of testing applications for engineered heterodimers.


Three-step monitoring of glycan and galectin profiles in the anterior segment of the adult chicken eye.

  • Joachim C Manning‎ et al.
  • Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft‎
  • 2018‎

A histochemical three-step approach is applied for processing a panel of sections that covers the different regions of fixed anterior segment of the adult chicken eye. This analysis gains insight into the presence of binding partners for functional pairing by galectin/lectin recognition in situ. Glycophenotyping with 11 fungal and plant lectins (step 1) revealed a complex pattern of reactivity with regional as well as glycan- and cell-type-dependent differences. When characterizing expression of the complete set of the seven adhesion/growth-regulatory chicken galectins immunohistochemically (step 2), the same holds true, clearly demonstrating profiles with individual properties, even for the CG-1A/B paralogue pair. Testing this set of labeled tissue lectins as probes (step 3) detected binding sites in a galectin-type-dependent manner. The results of steps 2 and 3 reflect the divergence of sequences and argue against functional redundancy among the galectins. These data shape the concept of an in situ network of galectins. As consequence, experimental in vitro studies will need to be performed from the level of testing a single protein to work with mixtures that mimic the (patho)physiological situation, a key message of this report.


Neurons define non-myelinated axon segments by the regulation of galectin-4-containing axon membrane domains.

  • Natalia Díez-Revuelta‎ et al.
  • Scientific reports‎
  • 2017‎

The mechanism underlying selective myelination of axons versus dendrites or neuronal somata relies on the expression of somatodendritic membrane myelination inhibitors (i.e. JAM2). However, axons still present long unmyelinated segments proposed to contribute to axonal plasticity and higher order brain functions. Why these segments remain unmyelinated is still an unresolved issue. The bifunctional lectin galectin-4 (Gal-4) organizes the transport of axon glycoproteins by binding to N-acetyllactosamine (LacNac) termini of N-glycans. We have shown that Gal-4 is sorted to segmental domains (G4Ds) along the axon surface, reminiscent of these long unmyelinated axon segments in cortical neurons. We report here that oligodendrocytes (OLGs) do not deposit myelin on Gal-4 covered surfaces or myelinate axonal G4Ds. In addition, Gal-4 interacts and co-localizes in G4Ds with contactin-1, a marker of another type of non-myelinated segments, the nodes of Ranvier. Neither Gal-4 expression nor G4D dimensions are affected by myelin extracts or myelinating OLGs, but are reduced with neuron maturation. As in vitro, Gal-4 is consistently segregated from myelinated structures in the brain. Our data shape the novel concept that neurons establish axon membrane domains expressing Gal-4, the first inhibitor of myelination identified in axons, whose regulated boundaries delineate myelination-incompetent axon segments along development.


Pro4 prolyl peptide bond isomerization in human galectin-7 modulates the monomer-dimer equilibrum to affect function.

  • Michelle C Miller‎ et al.
  • The Biochemical journal‎
  • 2020‎

Human galectin-7 (Gal-7; also termed p53-induced gene 1 product) is a multifunctional effector by productive pairing with distinct glycoconjugates and protein counter-receptors in the cytoplasm and nucleus, as well as on the cell surface. Its structural analysis by NMR spectroscopy detected doubling of a set of particular resonances, an indicator of Gal-7 existing in two conformational states in slow exchange on the chemical shift time scale. Structural positioning of this set of amino acids around the P4 residue and loss of this phenomenon in the bioactive P4L mutant indicated cis-trans isomerization at this site. Respective resonance assignments confirmed our proposal of two Gal-7 conformers. Mapping hydrogen bonds and considering van der Waals interactions in molecular dynamics simulations revealed a structural difference for the N-terminal peptide, with the trans-state being more exposed to solvent and more mobile than the cis-state. Affinity for lactose or glycan-inhibitable neuroblastoma cell surface contact formation was not affected, because both conformers associated with an overall increase in order parameters (S2). At low µM concentrations, homodimer dissociation is more favored for the cis-state of the protein than its trans-state. These findings give direction to mapping binding sites for protein counter-receptors of Gal-7, such as Bcl-2, JNK1, p53 or Smad3, and to run functional assays at low concentration to test the hypothesis that this isomerization process provides a (patho)physiologically important molecular switch for Gal-7.


Non-synonymous single nucleotide polymorphisms in genes for immunoregulatory galectins: association of galectin-8 (F19Y) occurrence with autoimmune diseases in a Caucasian population.

  • Zsuzsanna Pál‎ et al.
  • Biochimica et biophysica acta‎
  • 2012‎

Galectins are potent immune regulators, with galectin-8 acting as a pro-apoptotic effector on synovial fluid cells and thymocytes and stimulator on T-cells. To set a proof-of-principle example for risk assessment in autoimmunity, and for a mutation affecting physiological galectin sensor functions, a polymorphism in the coding region of the galectin-8 gene (rs2737713; F19Y) was studied for its association with two autoimmune disorders, i.e. rheumatoid arthritis and myasthenia gravis.


Functional interplay between ganglioside GM1 and cross-linking galectin-1 induces axon-like neuritogenesis via integrin-based signaling and TRPC5-dependent Ca²⁺ influx.

  • Gusheng Wu‎ et al.
  • Journal of neurochemistry‎
  • 2016‎

Axon-like neuritogenesis in neuroblastoma (NG108-15) cells and primary cerebellar granular neurons is furthered by the presence of ganglioside GM1. We describe here that galectin-1 (Gal-1), a homobivalent endogenous lectin, is an effector by cross-linking the ganglioside and its associated glycoprotein α5 β1 -integrin. The thereby triggered signaling cascade involves autophosphorylation of focal adhesion kinase and activation of phospholipase Cγ and phosphoinositide-3 kinase. This leads to a transient increase in the intracellular Ca(2+) concentration by opening of TRPC5 channels, which belong to the signal transduction-gated cation channels. Controls with GM1-defective cells (NG-CR72 and neurons from ganglio-series KO mice) were retarded in axonal growth, underscoring the relevance of GM1 as functional counterreceptor for Gal-1. The lectin's presence was detected in the NG108-15 cells, suggesting an autocrine mechanism of action, and in astrocytes in situ. Gal-1, as cross-linking lectin, can thus translate metabolic conversion of ganglioside GD1a to GM1 by neuraminidase action into axon growth. Galectin-1 (Gal-1) was shown an effector of axonogenesis in cerebellar granule neurons (CGNs) and NG108-15 cells by cross-linking GM1 ganglioside and its associated glycoprotein α5 β1 -integrin. The resulting signaling led to a transient increase in intracellular Ca(2+) by opening TRPC5 channels. CGNs deficient in GM1 showed retarded axonogenesis, underscoring the relevance of GM1 as functional counterreceptor for Gal-1 in this process. This Gal-1/GM1-induced signaling was manifest only at the earliest, initiating stage of axon development.


Chemokines and galectins form heterodimers to modulate inflammation.

  • Veit Eckardt‎ et al.
  • EMBO reports‎
  • 2020‎

Chemokines and galectins are simultaneously upregulated and mediate leukocyte recruitment during inflammation. Until now, these effector molecules have been considered to function independently. Here, we tested the hypothesis that they form molecular hybrids. By systematically screening chemokines for their ability to bind galectin-1 and galectin-3, we identified several interacting pairs, such as CXCL12 and galectin-3. Based on NMR and MD studies of the CXCL12/galectin-3 heterodimer, we identified contact sites between CXCL12 β-strand 1 and Gal-3 F-face residues. Mutagenesis of galectin-3 residues involved in heterodimer formation resulted in reduced binding to CXCL12, enabling testing of functional activity comparatively. Galectin-3, but not its mutants, inhibited CXCL12-induced chemotaxis of leukocytes and their recruitment into the mouse peritoneum. Moreover, galectin-3 attenuated CXCL12-stimulated signaling via its receptor CXCR4 in a ternary complex with the chemokine and receptor, consistent with our structural model. This first report of heterodimerization between chemokines and galectins reveals a new type of interaction between inflammatory mediators that can underlie a novel immunoregulatory mechanism in inflammation. Thus, further exploration of the chemokine/galectin interactome is warranted.


Open Wound Healing In Vivo: Monitoring Binding and Presence of Adhesion/Growth-Regulatory Galectins in Rat Skin during the Course of Complete Re-Epithelialization.

  • Peter Gál‎ et al.
  • Acta histochemica et cytochemica‎
  • 2011‎

Galectins are a family of carbohydrate-binding proteins that modulate inflammation and immunity. This functional versatility prompted us to perform a histochemical study of their occurrence during wound healing using rat skin as an in vivo model. Wound healing is a dynamic process that exhibits three basic phases: inflammation, proliferation, and maturation. In this study antibodies against keratins-10 and -14, wide-spectrum cytokeratin, vimentin, and fibronectin, and non-cross-reactive antibodies to galectins-1, -2, and -3 were applied to frozen sections of skin specimens two days (inflammatory phase), seven days (proliferation phase), and twenty-one days (maturation phase) after wounding. The presence of binding sites for galectins-1, -2, -3, and -7 as a measure for assessing changes in reactivity was determined using labeled proteins as probes. Our study detected a series of alterations in galectin parameters during the different phases of wound healing. Presence of galectin-1, for example, increased during the early phase of healing, whereas galectin-3 rapidly decreased in newly formed granulation tissue. In addition, nuclear reactivity of epidermal cells for galectin-2 occurred seven days post-trauma. The dynamic regulation of galectins during re-epithelialization intimates a role of these proteins in skin wound healing, most notably for galectin-1 increasing during the early phases and galectin-3 then slightly increasing during later phases of healing. Such changes may identify a potential target for the development of novel drugs to aid in wound repair and patients' care.


Design-functionality relationships for adhesion/growth-regulatory galectins.

  • Anna-Kristin Ludwig‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

Glycan-lectin recognition is assumed to elicit its broad range of (patho)physiological functions via a combination of specific contact formation with generation of complexes of distinct signal-triggering topology on biomembranes. Faced with the challenge to understand why evolution has led to three particular modes of modular architecture for adhesion/growth-regulatory galectins in vertebrates, here we introduce protein engineering to enable design switches. The impact of changes is measured in assays on cell growth and on bridging fully synthetic nanovesicles (glycodendrimersomes) with a chemically programmable surface. Using the example of homodimeric galectin-1 and monomeric galectin-3, the mutual design conversion caused qualitative differences, i.e., from bridging effector to antagonist/from antagonist to growth inhibitor and vice versa. In addition to attaining proof-of-principle evidence for the hypothesis that chimera-type galectin-3 design makes functional antagonism possible, we underscore the value of versatile surface programming with a derivative of the pan-galectin ligand lactose. Aggregation assays with N,N'-diacetyllactosamine establishing a parasite-like surface signature revealed marked selectivity among the family of galectins and bridging potency of homodimers. These findings provide fundamental insights into design-functionality relationships of galectins. Moreover, our strategy generates the tools to identify biofunctional lattice formation on biomembranes and galectin-reagents with therapeutic potential.


Structural insight into the binding of human galectins to corneal keratan sulfate, its desulfated form and related saccharides.

  • Michelle C Miller‎ et al.
  • Scientific reports‎
  • 2020‎

Glycosaminoglycan chains of keratan sulfate proteoglycans appear to be physiologically significant by pairing with tissue lectins. Here, we used NMR spectroscopy and molecular dynamics (MD) simulations to characterize interactions of corneal keratan sulfate (KS), its desulfated form, as well as di-, tetra- (N-acetyllactosamine and lacto-N-tetraose) and octasaccharides with adhesion/growth-regulatory galectins, in particular galectin-3 (Gal-3). The KS contact region involves the lectin canonical binding site, with estimated KD values in the low µM range and stoichiometry of ~ 8 to ~ 20 galectin molecules binding per polysaccharide chain. Compared to Gal-3, the affinity to Gal-7 is relatively low, signaling preferences among galectins. The importance of the sulfate groups was delineated by using desulfated analogs that exhibit relatively reduced affinity. Binding studies with two related di- and tetrasaccharides revealed a similar decrease that underscores affinity enhancement by repetitive arrangement of disaccharide units. MD-based binding energies of KS oligosaccharide-loaded galectins support experimental data on Gal-3 and -7, and extend the scope of KS binding to Gal-1 and -9N. Overall, our results provide strong incentive to further probe the relevance of molecular recognition of KS by galectins in terms of physiological processes in situ, e.g. maintaining integrity of mucosal barriers, intermolecular (lattice-like) gluing within the extracellular meshwork or synaptogenesis.


Chicken GRIFIN: Structural characterization in crystals and in solution.

  • Federico M Ruiz‎ et al.
  • Biochimie‎
  • 2018‎

Despite its natural abundance in lenses of vertebrates the physiological function(s) of the galectin-related inter-fiber protein (GRIFIN) is (are) still unclear. The same holds true for the significance of the unique interspecies (fish/birds vs mammals) variability in the capacity to bind lactose. In solution, ultracentrifugation and small angle X-ray scattering (at concentrations up to 9 mg/mL) characterize the protein as compact and stable homodimer without evidence for aggregation. The crystal structure of chicken (C-)GRIFIN at seven pH values from 4.2 to 8.5 is reported, revealing compelling stability. Binding of lactose despite the Arg71Val deviation from the sequence signature of galectins matched the otherwise canonical contact pattern with thermodynamics of an enthalpically driven process. Upon lactose accommodation, the side chain of Arg50 is shifted for hydrogen bonding to the 3-hydroxyl of glucose. No evidence for a further ligand-dependent structural alteration was obtained in solution by measuring hydrogen/deuterium exchange mass spectrometrically in peptic fingerprints. The introduction of the Asn48Lys mutation, characteristic for mammalian GRIFINs that have lost lectin activity, lets labeled C-GRIFIN maintain capacity to stain tissue sections. Binding is no longer inhibitable by lactose, as seen for the wild-type protein. These results establish the basis for detailed structure-activity considerations and are a step to complete the structural description of all seven members of the galectin network in chicken.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: