Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

MRI-based cell tracking of OATP-expressing cell transplants by pre-labeling with Gd-EOB-DTPA.

  • Tapas Bhattacharyya‎ et al.
  • Research square‎
  • 2023‎

A critical step in cell-based therapies is determining the exact position of transplanted cells immediately post-transplant. Here, we devised a method to detect cell transplants immediately post-transplant, using a clinical gadolinium-based contrast agent. These cells were detected as hyperintense signals using a clinically familiar T1-weighted MRI protocol.


Transport Pathways and Kinetics of Cerebrospinal Fluid Tracers in Mouse Brain Observed by Dynamic Contrast-Enhanced MRI.

  • Yuran Zhu‎ et al.
  • Research square‎
  • 2023‎

Background: Recent studies have suggested the glymphatic system as a solute transport pathway and waste removal mechanism in the brain. Imaging intracisternally administered tracers provides the opportunity of assessing various aspects of the glymphatic function. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) allows the evaluation of both the kinetics and spatial distribution of tracer transport in the whole brain. However, assessing mouse glymphatic function by DCE-MRI has been challenged by the small size of a mouse brain and the limited volume of fluids that can be delivered intracisternally without significantly altering the intracranial pressure. Further, previous studies in rats suggest that assessment of glymphatic function by DCE-MRI is dependent on the molecular size of the contrast agents. Methods: We established and validated an intracisternal infusion protocol in mice that allowed the measurements of the entire time course of contrast agent transport for 2 hours. The transport kinetics and distribution of three MRI contrast agents with drastically different molecular weights (MWs): Gd-DTPA (MW=661.8 Da, n=7), GadoSpin-P (MW=200 kDa, n=6), and oxygen-17 enriched water (H 2 17 O, MW=19 Da, n=7), were investigated. Results: The transport of H 2 17 O was significantly faster and more extensive than the two gadolinium-based contrast agents. Time-lagged correlation analysis and clustering analysis comparing the kinetics of Gd-DTPA and H 2 17 O transport also showed different cluster patterns and lag time between different regions of the brain, suggesting different transport pathways for H 2 17 O because of its direct access to parenchymal tissues via the aquaporin-4 water channels. Further, there were also significant differences in the transport kinetics of the three tracers to the lateral ventricles, which reflects the differences in forces that drive tracer transport in the brain. Conclusions: Comparison of the transport kinetics and distribution of three MRI contrast agents with different molecular sizes showed drastically different transport profiles and clustering patterns, suggesting that the transport pathways and kinetics in the glymphatic system are size-dependent.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: