Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

GABA(A) receptors implicated in REM sleep control express a benzodiazepine binding site.

  • Tin Quang Nguyen‎ et al.
  • Brain research‎
  • 2013‎

It has been reported that non-subtype-selective GABAA receptor antagonists injected into the nucleus pontis oralis (PnO) of rats induced long-lasting increases in REM sleep. Characteristics of these REM sleep increases were identical to those resulting from injection of muscarinic cholinergic agonists. Both actions were blocked by the muscarinic antagonist, atropine. Microdialysis of GABAA receptor antagonists into the PnO resulted in increased acetylcholine levels. These findings were consistent with GABAA receptor antagonists disinhibiting acetylcholine release in the PnO to result in an acetylcholine-mediated REM sleep induction. Direct evidence has been lacking for localization in the PnO of the specific GABAA receptor-subtypes mediating the REM sleep effects. Here, we demonstrated a dose-related, long-lasting increase in REM sleep following injection (60 nl) in the PnO of the inverse benzodiazepine agonist, methyl-6,7-dimethoxy-4-ethyl-β-carboline (DMCM, 10(-2)M). REM sleep increases were greater and more consistently produced than with the non-selective antagonist gabazine, and both were blocked by atropine. Fluorescence immunohistochemistry and laser scanning confocal microscopy, colocalized in PnO vesicular acetylcholine transporter, a presynaptic marker of cholinergic boutons, with the γ2 subunit of the GABAA receptor. These data provide support for the direct action of GABA on mechanisms of acetylcholine release in the PnO. The presence of the γ2 subunit at this locus and the REM sleep induction by DMCM are consistent with binding of benzodiazepines by a GABAA receptor-subtype in control of REM sleep.


A novel GABAergic afferent input to the pontine reticular formation: the mesopontine GABAergic column.

  • Chang-Lin Liang‎ et al.
  • Brain research‎
  • 2009‎

Pharmacological manipulations of gamma-aminobutyric acid (GABA) neurotransmission in the nucleus pontis oralis (PnO) of the rat brainstem produce alterations in sleep/wake behavior. Local applications of GABA(A) receptor antagonists and agonists increase REM sleep and wake, respectively. These findings support a role for GABAergic mechanisms of the PnO in the control of arousal state. We have been investigating sources of GABA innervation of the PnO that may interact with local GABA(A) receptors in the control of state. Utilizing a retrograde tracer, cholera toxin-B subunit (CTb), injected into the PnO and dual-label immunohistochemistry with an antibody against glutamic acid decarboxalase-67 (GAD67), we report on a previously unidentified GABAergic neuronal population projecting to the contralateral PnO appearing as a column of cells, with long-axis in the sagittal plane, extending through the midbrain and pons. We refer to these neurons as the mesopontine GABAergic column (MPGC). The contiguous, columnar, anatomical distribution suggests operation as a functional neural system, which may influence expression of REM sleep, wake and other behaviors subserved by the PnO.


GABAA receptors are located in cholinergic terminals in the nucleus pontis oralis of the rat: implications for REM sleep control.

  • Chang-Lin Liang‎ et al.
  • Brain research‎
  • 2014‎

The oral pontine reticular formation (PnO) of rat is one region identified in the brainstem as a rapid eye movement (REM) sleep induction zone. Microinjection of GABA(A) receptor antagonists into PnO induces a long lasting increase in REM sleep, which is similar to that produced by cholinergic agonists. We previously showed that this REM sleep-induction can be completely blocked by a muscarinic antagonist, indicating that the REM sleep-inducing effect of GABA(A) receptor antagonism is dependent upon the local cholinergic system. Consistent with these findings, it has been reported that GABA(A) receptor antagonists microdialyzed into PnO resulted in increased levels of acetylcholine. We hypothesize that GABA(A) receptors located on cholinergic boutons in the PnO are responsible for the REM sleep induction by GABA(A) receptor antagonists through blocking GABA inhibition of acetylcholine release. Cholinergic, varicose axon fibers were studied in the PnO by immunofluorescence and confocal, laser scanning microscopy. Immunoreactive cholinergic boutons were found to be colocalized with GABA(A) receptor subunit protein γ2. This finding implicates a specific subtype and location of GABA(A) receptors in PnO of rat in the control of REM sleep.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: