2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Behavioral Deficits Induced by Somatostatin-Positive GABA Neuron Silencing Are Rescued by Alpha 5 GABA-A Receptor Potentiation.

  • Corey Fee‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2021‎

Deficits in somatostatin-positive gamma-aminobutyric acid interneurons (SST+ GABA cells) are commonly reported in human studies of mood and anxiety disorder patients. A causal link between SST+ cell dysfunction and symptom-related behaviors has been proposed based on rodent studies showing that chronic stress, a major risk factor for mood and anxiety disorders, induces a low SST+ GABA cellular phenotype across corticolimbic brain regions; that lowering Sst, SST+ cell, or GABA functions induces depressive-/anxiety-like behaviors (a rodent behavioral construct collectively defined as "behavioral emotionality"); and that disinhibiting SST+ cells has antidepressant-like effects. Recent studies found that compounds preferentially potentiating receptors mediating SST+ cell functions, α5-GABAA receptor positive allosteric modulators (α5-PAMs), achieved antidepressant-like effects. Together, the evidence suggests that SST+ cells regulate mood and cognitive functions that are disrupted in mood disorders and that rescuing SST+ cell function via α5-PAM may represent a targeted therapeutic strategy.


GABA-A Alpha 2/3 but Not Alpha 1 Receptor Subunit Ligand Inhibits Harmaline and Pimozide-Induced Tremor in Rats.

  • Barbara Kosmowska‎ et al.
  • Biomolecules‎
  • 2023‎

Treatment of tremors, such as in essential tremor (ET) and Parkinson's disease (PD) is mostly ineffective. Exact tremor pathomechanisms are unknown and relevant animal models are missing. GABA-A receptor is a target for tremorolytic medications, but current non-selective drugs produce side effects and have safety liabilities. The aim of this study was a search for GABA-A subunit-specific tremorolytics using different tremor-generating mechanisms. Two selective positive allosteric modulators (PAMs) were tested. Zolpidem, targeting GABA-A α1, was not effective in models of harmaline-induced ET, pimozide- or tetrabenazine-induced tremulous jaw movements (TJMs), while the novel GABA-A α2/3 selective MP-III-024 significantly reduced both the harmaline-induced ET tremor and pimozide-induced TJMs. While zolpidem decreased the locomotor activity of the rats, MP-III-024 produced small increases. These results provide important new clues into tremor suppression mechanisms initiated by the enhancement of GABA-driven inhibition in pathways controlled by α2/3 but not α1 containing GABA-A receptors. Tremor suppression by MP-III-024 provides a compelling reason to consider selective PAMs targeting α2/3-containing GABA-A receptors as novel therapeutic drug targets for ET and PD-associated tremor. The possibility of the improved tolerability and safety of this mechanism over non-selective GABA potentiation provides an additional rationale to further pursue the selective α2/3 hypothesis.


Positive Allosteric Modulation of α5-GABAA Receptors Reverses Stress-Induced Alterations in Dopamine System Function and Prepulse Inhibition of Startle.

  • Alexandra M McCoy‎ et al.
  • The international journal of neuropsychopharmacology‎
  • 2022‎

Up to 64% of patients diagnosed with posttraumatic stress disorder (PTSD) experience psychosis, likely attributable to aberrant dopamine neuron activity. We have previously demonstrated that positive allosteric modulators of α5-GABAARs can selectively decrease hippocampal activity and reverse psychosis-like physiological and behavioral alterations in a rodent model used to study schizophrenia; however, whether this approach translates to a PTSD model remains to be elucidated.


Zolpidem Activation of Alpha 1-Containing GABAA Receptors Selectively Inhibits High Frequency Action Potential Firing of Cortical Neurons.

  • Elena Neumann‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

Introduction: High frequency neuronal activity in the cerebral cortex can be induced by noxious stimulation during surgery, brain injury or poisoning. In this scenario, it is essential to block cortical hyperactivity to protect the brain against damage, e.g., by using drugs that act as positive allosteric modulators at GABAA receptors. Yet, cortical neurons express multiple, functionally distinct GABAA receptor subtypes. Currently there is a lack of knowledge which GABAA receptor subtypes would be a good pharmacological target to reduce extensive cortical activity. Methods: Spontaneous action potential activity was monitored by performing extracellular recordings from organotypic neocortical slice cultures of wild type and GABAAR-α1(H101R) mutant mice. Phases of high neuronal activity were characterized using peri-event time histograms. Drug effects on within-up state firing rates were quantified via Hedges' g. Results: We quantified the effects of zolpidem, a positive modulator of GABAA receptors harboring α1-subunits, and the experimental benzodiazepine SH-053-2'F-S-CH3, which preferably acts at α2/3/5- but spares α1-subunits. Both agents decreased spontaneous action potential activity but altered the firing patterns in different ways. Zolpidem reduced action potential firing during highly active network states. This action was abolished by flumazenil, suggesting that it was mediated by benzodiazepine-sensitive GABAA receptors. SH-053-2'F-S-CH3 also attenuated neuronal activity, but unlike zolpidem, failed to reduce high frequency firing. To confirm that zolpidem actions were indeed mediated via α1-dependent actions, it was evaluated in slices from wild type and α(H101R) knock-in mice. Inhibition of high frequency action potential firing was observed in slices from wild type but not mutant mice. Conclusion: Our results suggest that during episodes of scarce and high neuronal activity action potential firing of cortical neurons is controlled by different GABAA receptor subtypes. Exaggerated firing of cortical neurons is reduced by positive modulation of α1-, but not α2/3/5-subunit containing GABAA receptors.


Synthesis and Receptor Binding Studies of α5 GABAAR Selective Novel Imidazodiazepines Targeted for Psychiatric and Cognitive Disorders.

  • Dishary Sharmin‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

GABA mediates inhibitory actions through various GABAA receptor subtypes, including 19 subunits in human GABAAR. Dysregulation of GABAergic neurotransmission is associated with several psychiatric disorders, including depression, anxiety, and schizophrenia. Selective targeting of α2/3 GABAARs can treat mood and anxiety, while α5 GABAA-Rs can treat anxiety, depression, and cognitive performance. GL-II-73 and MP-III-022, α5-positive allosteric modulators have shown promising results in animal models of chronic stress, aging, and cognitive disorders, including MDD, schizophrenia, autism, and Alzheimer's disease. Described in this article is how small changes in the structure of imidazodiazepine substituents can greatly impact the subtype selectivity of benzodiazepine GABAAR. To investigate alternate and potentially more effective therapeutic compounds, modifications were made to the structure of imidazodiazepine 1 to synthesize different amide analogs. The novel ligands were screened at the NIMH PDSP against a panel of 47 receptors, ion channels, including hERG, and transporters to identify on- and off-target interactions. Any ligands with significant inhibition in primary binding were subjected to secondary binding assays to determine their Ki values. The newly synthesized imidazodiazepines were found to have variable affinities for the benzodiazepine site and negligible or no binding to any off-target profile receptors that could cause other physiological problems.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: