Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Nociceptin/Orphanin-FQ Inhibits Gonadotropin-Releasing Hormone Neurons via G-Protein-Gated Inwardly Rectifying Potassium Channels.

  • Stephanie Constantin‎ et al.
  • eNeuro‎
  • 2018‎

The pulsatile release of gonadotropin-releasing hormone (GnRH) is a key feature of the hypothalamic-pituitary-gonadal axis. Kisspeptin neurons in the arcuate nucleus (ARC) trigger GnRH neuronal activity, but how GnRH neurons return to baseline electrical activity is unknown. Nociceptin/orphanin-FQ (OFQ) is an inhibitory neuromodulator. ARC proopiomelanocortin (POMC) neurons, known to receive inputs from ARC kisspeptin neurons, contact GnRH neurons and coexpress OFQ in the rat. In the present study, the effect of OFQ(1-13) on GnRH neurons was determined in the mouse. We identified transcripts for the OFQ receptor [opioid receptor like 1 (ORL1)] in GnRH neurons, and, using two-model systems (explants and slices), we found that OFQ exerted a potent inhibition on GnRH neurons, with or without excitatory inputs. We confirmed that the inhibition was mediated by ORL1 via Gi/o-protein coupling. The inhibition, occurring independently of levels of intracellular cyclic adenosine monophosphate, was sensitive to inwardly rectifying potassium channels. The only specific blocker of Gi/o-protein-coupled inwardly rectifying potassium (GIRK) channels, tertiapin-Q (TPNQ), was ineffective in the inhibition of OFQ. Two GIRK activators, one sharing the binding site of TPNQ and one active only on GIRK1-containing GIRK channels, failed to trigger an inhibition. In contrast, protein kinase C phosphorylation activation, known to inhibit GIRK2-mediated currents, prevented the OFQ inhibition. These results indicate a specific combination of GIRK subunits, GIRK2/3 in GnRH neurons. In vivo, double-labeled OFQ/POMC fibers were found in the vicinity of GnRH neurons, and OFQ fibers apposed GnRH neurons. Together, this study brings to light a potent neuromodulator of GnRH neurons.


Galanin Activates G Protein Gated Inwardly Rectifying Potassium Channels and Suppresses Kisspeptin-10 Activation of GnRH Neurons.

  • Stephanie Constantin‎ et al.
  • Endocrinology‎
  • 2016‎

GnRH neurons are regulated by hypothalamic kisspeptin neurons. Recently, galanin was identified in a subpopulation of kisspeptin neurons. Although the literature thoroughly describes kisspeptin activation of GnRH neurons, little is known about the effects of galanin on GnRH neurons. This study investigated whether galanin could alter kisspeptin signaling to GnRH neurons. GnRH cells maintained in explants, known to display spontaneous calcium oscillations, and a long-lasting calcium response to kisspeptin-10 (kp-10), were used. First, transcripts for galanin receptors (GalRs) were examined. Only GalR1 was found in GnRH neurons. A series of experiments was then performed to determine the action of galanin on kp-10 activated GnRH neurons. Applied after kp-10 activation, galanin 1-16 (Gal1-16) rapidly suppressed kp-10 activation. Applied with kp-10, Gal1-16 prevented kp-10 activation until its removal. To determine the mechanism by which galanin inhibited kp-10 activation of GnRH neurons, Gal1-16 and galanin were applied to spontaneously active GnRH neurons. Both inhibited GnRH neuronal activity, independent of GnRH neuronal inputs. This inhibition was mimicked by a GalR1 agonist but not by GalR2 or GalR2/3 agonists. Although Gal1-16 inhibition relied on Gi/o signaling, it was independent of cAMP levels but sensitive to blockers of G protein-coupled inwardly rectifying potassium channels. A newly developed bioassay for GnRH detection showed Gal1-16 decreased the kp-10-evoked GnRH secretion below detection threshold. Together, this study shows that galanin is a potent regulator of GnRH neurons, possibly acting as a physiological break to kisspeptin excitation.


Neuropeptide Y directly inhibits neuronal activity in a subpopulation of gonadotropin-releasing hormone-1 neurons via Y1 receptors.

  • Ulrike Klenke‎ et al.
  • Endocrinology‎
  • 2010‎

Neuropeptide Y (NPY), a member of the pancreatic polypeptide family, is an orexigenic hormone. GnRH-1 neurons express NPY receptors. This suggests a direct link between metabolic function and reproduction. However, the effect of NPY on GnRH-1 cells has been variable, dependent on metabolic and reproductive status of the animal. This study circumvents these issues by examining the role of NPY on GnRH-1 neuronal activity in an explant model that is based on the extra-central nervous system origin of GnRH-1 neurons. These prenatal GnRH-1 neurons express many receptors found in GnRH-1 neurons in the brain and use similar transduction pathways. In addition, these GnRH-1 cells exhibit spontaneous and ligand-induced oscillations in intracellular calcium as well as pulsatile calcium-controlled GnRH-1 release. Single-cell PCR determined that prenatal GnRH-1 neurons express the G protein-coupled Y1 receptor (Y1R). To address the influence of NPY on GnRH-1 neuronal activity, calcium imaging was used to monitor individual and population dynamics. NPY treatment, mimicked with Y1R agonist, significantly decreased the number of calcium peaks per minute in GnRH-1 neurons and was prevented by a Y1R antagonist. Pertussis toxin blocked the effect of NPY on GnRH-1 neuronal activity, indicating the coupling of Y1R to inhibitory G protein. The NPY-induced inhibition was independent of the adenylate cyclase pathway but mediated by the activation of G protein-coupled inwardly rectifying potassium channels. These results indicate that at an early developmental stage, GnRH-1 neuronal activity can be directly inhibited by NPY via its Y1R.


An Inhibitory Circuit From Brainstem to GnRH Neurons in Male Mice: A New Role for the RFRP Receptor.

  • Stephanie Constantin‎ et al.
  • Endocrinology‎
  • 2021‎

RFamide-related peptides (RFRPs, mammalian orthologs of gonadotropin-inhibitory hormone) convey circadian, seasonal, and social cues to the reproductive system. They regulate gonadotropin secretion by modulating gonadotropin-releasing hormone (GnRH) neurons via the RFRP receptor. Mice lacking this receptor are fertile but exhibit abnormal gonadotropin responses during metabolic challenges, such as acute fasting, when the normal drop in gonadotropin levels is delayed. Although it is known that these food intake signals to the reproductive circuit originate in the nucleus tractus solitarius (NTS) in the brainstem, the phenotype of the neurons conveying the signal remains unknown. Given that neuropeptide FF (NPFF), another RFamide peptide, resides in the NTS and can bind to the RFRP receptor, we hypothesized that NPFF may regulate GnRH neurons. To address this question, we used a combination of techniques: cell-attached electrophysiology on GnRH-driven green fluorescent protein-tagged neurons in acute brain slices; calcium imaging on cultured GnRH neurons; and immunostaining on adult brain tissue. We found (1) NPFF inhibits GnRH neuron excitability via the RFRP receptor and its canonical signaling pathway (Gi/o protein and G protein-coupled inwardly rectifying potassium channels), (2) NPFF-like fibers in the vicinity of GnRH neurons coexpress neuropeptide Y, (3) the majority of NPFF-like cell bodies in the NTS also coexpress neuropeptide Y, and (4) acute fasting increased NPFF-like immunoreactivity in the NTS. Together these data indicate that NPFF neurons within the NTS inhibit GnRH neurons, and thus reproduction, during fasting but prior to the energy deficit.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: