Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Systematic Evaluation of the Viable Microbiome in the Human Oral and Gut Samples with Spike-in Gram+/- Bacteria.

  • Feng Liu‎ et al.
  • mSystems‎
  • 2023‎

PMA (propidium monoazide) is one of the few methods that are compatible with metagenomic sequencing to characterize the live/intact microbiota. However, its efficiency in complex communities such as saliva and feces is still controversial. An effective method for depleting host and dead bacterial DNA in human microbiome samples is lacking. Here, we systematically evaluate the efficiency of osmotic lysis and PMAxx treatment (lyPMAxx) in characterizing the viable microbiome with four live/dead Gram+/Gram- microbial strains in simple synthetic and spiked-in complex communities. We show that lyPMAxx-quantitative PCR (qPCR)/sequencing eliminated more than 95% of the host and heat-killed microbial DNA and had a much smaller effect on the live microbes in both simple mock and spiked-in complex communities. The overall microbial load and the alpha diversity of the salivary and fecal microbiome were decreased by lyPMAxx, and the relative abundances of the microbes were changed. The relative abundances of Actinobacteria, Fusobacteria, and Firmicutes in saliva were decreased by lyPMAxx, as was that of Firmicutes in feces. We also found that the frequently used sample storage method, freezing with glycerol, killed or injured 65% and 94% of the living microbial cells in saliva and feces, respectively, with the Proteobacteria phylum affected most in saliva and the Bacteroidetes and Firmicutes phyla affected most in feces. By comparing the absolute abundance variation of the shared species among different sample types and individuals, we found that sample habitat and personal differences affected the response of microbial species to lyPMAxx and freezing. IMPORTANCE The functions and phenotypes of microbial communities are largely defined by viable microbes. Through advanced nucleic acid sequencing technologies and downstream bioinformatic analyses, we gained an insight into the high-resolution microbial community composition of human saliva and feces, yet we know very little about whether such community DNA sequences represent viable microbes. PMA-qPCR was used to characterize the viable microbes in previous studies. However, its efficiency in complex communities such as saliva and feces is still controversial. By spiking-in four live/dead Gram+/Gram- bacterial strains, we demonstrate that lyPMAxx can effectively discriminate between live and dead microbes in the simple synthetic community and complex human microbial communities (saliva and feces). In addition, freezing storage was found to kill or injure the microbes in saliva and feces significantly, as measured with lyPMAxx-qPCR/sequencing. This method has a promising prospect in the viable/intact microbiota detection of complex human microbial communities.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: