Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 64 papers

Extended functional connectivity of convergent structural alterations among individuals with PTSD: a neuroimaging meta-analysis.

  • Brianna S Pankey‎ et al.
  • Behavioral and brain functions : BBF‎
  • 2022‎

Post-traumatic stress disorder (PTSD) is a debilitating disorder defined by the onset of intrusive, avoidant, negative cognitive or affective, and/or hyperarousal symptoms after witnessing or experiencing a traumatic event. Previous voxel-based morphometry studies have provided insight into structural brain alterations associated with PTSD with notable heterogeneity across these studies. Furthermore, how structural alterations may be associated with brain function, as measured by task-free and task-based functional connectivity, remains to be elucidated.


Comparison of the disparity between Talairach and MNI coordinates in functional neuroimaging data: validation of the Lancaster transform.

  • Angela R Laird‎ et al.
  • NeuroImage‎
  • 2010‎

Spatial normalization of neuroimaging data is a standard step when assessing group effects. As a result of divergent analysis procedures due to different normalization algorithms or templates, not all published coordinates refer to the same neuroanatomical region. Specifically, the literature is populated with results in the form of MNI or Talairach coordinates, and their disparity can impede the comparison of results across different studies. This becomes particularly problematic in coordinate-based meta-analyses, wherein coordinate disparity should be corrected to reduce error and facilitate literature reviews. In this study, a quantitative comparison was performed on two corrections, the Brett transform (i.e., "mni2tal"), and the Lancaster transform (i.e., "icbm2tal"). Functional magnetic resonance imaging (fMRI) data acquired during a standard paired associates task indicated that the disparity between MNI and Talairach coordinates was better reduced via the Lancaster transform, as compared to the Brett transform. In addition, an activation likelihood estimation (ALE) meta-analysis of the paired associates literature revealed that a higher degree of concordance was obtained when using the Lancaster transform in the form of fewer, smaller, and more intense clusters. Based on these results, we recommend that the Lancaster transform be adopted as the community standard for reducing disparity between results reported as MNI or Talairach coordinates, and suggest that future spatial normalization strategies be designed to minimize this variability in the literature.


Estimating the prevalence of missing experiments in a neuroimaging meta-analysis.

  • Pantelis Samartsidis‎ et al.
  • Research synthesis methods‎
  • 2020‎

Coordinate-based meta-analyses (CBMA) allow researchers to combine the results from multiple functional magnetic resonance imaging experiments with the goal of obtaining results that are more likely to generalize. However, the interpretation of CBMA findings can be impaired by the file drawer problem, a type of publication bias that refers to experiments that are carried out but are not published. Using foci per contrast count data from the BrainMap database, we propose a zero-truncated modeling approach that allows us to estimate the prevalence of nonsignificant experiments. We validate our method with simulations and real coordinate data generated from the Human Connectome Project. Application of our method to the data from BrainMap provides evidence for the existence of a file drawer effect, with the rate of missing experiments estimated as at least 6 per 100 reported. The R code that we used is available at https://osf.io/ayhfv/.


The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data.

  • Angela R Laird‎ et al.
  • BMC research notes‎
  • 2011‎

Neuroimaging researchers have developed rigorous community data and metadata standards that encourage meta-analysis as a method for establishing robust and meaningful convergence of knowledge of human brain structure and function. Capitalizing on these standards, the BrainMap project offers databases, software applications, and other associated tools for supporting and promoting quantitative coordinate-based meta-analysis of the structural and functional neuroimaging literature.


Neural bases of food perception: coordinate-based meta-analyses of neuroimaging studies in multiple modalities.

  • Claudia I Huerta‎ et al.
  • Obesity (Silver Spring, Md.)‎
  • 2014‎

The purpose of this study was to compare the results of the three food-cue paradigms most commonly used for functional neuroimaging studies to determine: i) commonalities and differences in the neural response patterns by paradigm and ii) the relative robustness and reliability of responses to each paradigm.


Multimodal MRI neuroimaging biomarkers for cognitive normal adults, amnestic mild cognitive impairment, and Alzheimer's disease.

  • Ai-Ling Lin‎ et al.
  • Neurology research international‎
  • 2012‎

Multimodal magnetic resonance imaging (MRI) techniques have been developed to noninvasively measure structural, metabolic, hemodynamic and functional changes of the brain. These advantages have made MRI an important tool to investigate neurodegenerative disorders, including diagnosis, disease progression monitoring, and treatment efficacy evaluation. This paper discusses recent findings of the multimodal MRI in the context of surrogate biomarkers for identifying the risk for AD in normal cognitive (NC) adults, brain anatomical and functional alterations in amnestic mild cognitive impairment (aMCI), and Alzheimer's disease (AD) patients. Further developments of these techniques and the establishment of promising neuroimaging biomarkers will enhance our ability to diagnose aMCI and AD in their early stages and improve the assessment of therapeutic efficacy in these diseases in future clinical trials.


Automated, Efficient, and Accelerated Knowledge Modeling of the Cognitive Neuroimaging Literature Using the ATHENA Toolkit.

  • Michael C Riedel‎ et al.
  • Frontiers in neuroscience‎
  • 2019‎

Neuroimaging research is growing rapidly, providing expansive resources for synthesizing data. However, navigating these dense resources is complicated by the volume of research articles and variety of experimental designs implemented across studies. The advent of machine learning algorithms and text-mining techniques has advanced automated labeling of published articles in biomedical research to alleviate such obstacles. As of yet, a comprehensive examination of document features and classifier techniques for annotating neuroimaging articles has yet to be undertaken. Here, we evaluated which combination of corpus (abstract-only or full-article text), features (bag-of-words or Cognitive Atlas terms), and classifier (Bernoulli naïve Bayes, k-nearest neighbors, logistic regression, or support vector classifier) resulted in the highest predictive performance in annotating a selection of 2,633 manually annotated neuroimaging articles. We found that, when utilizing full article text, data-driven features derived from the text performed the best, whereas if article abstracts were used for annotation, features derived from the Cognitive Atlas performed better. Additionally, we observed that when features were derived from article text, anatomical terms appeared to be the most frequently utilized for classification purposes and that cognitive concepts can be identified based on similar representations of these anatomical terms. Optimizing parameters for the automated classification of neuroimaging articles may result in a larger proportion of the neuroimaging literature being annotated with labels supporting the meta-analysis of psychological constructs.


Neurobiological impact of nicotinic acetylcholine receptor agonists: an activation likelihood estimation meta-analysis of pharmacologic neuroimaging studies.

  • Matthew T Sutherland‎ et al.
  • Biological psychiatry‎
  • 2015‎

Nicotinic acetylcholine receptor (nAChR) agonists augment cognition among cigarette smokers and nonsmokers, yet the systems-level neurobiological mechanisms underlying such improvements are not fully understood. Aggregating neuroimaging results regarding nAChR agonists provides a means to identify common functional brain changes that may be related to procognitive drug effects.


Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty.

  • Simon B Eickhoff‎ et al.
  • Human brain mapping‎
  • 2009‎

A widely used technique for coordinate-based meta-analyses of neuroimaging data is activation likelihood estimation (ALE). ALE assesses the overlap between foci based on modeling them as probability distributions centered at the respective coordinates. In this Human Brain Project/Neuroinformatics research, the authors present a revised ALE algorithm addressing drawbacks associated with former implementations. The first change pertains to the size of the probability distributions, which had to be specified by the used. To provide a more principled solution, the authors analyzed fMRI data of 21 subjects, each normalized into MNI space using nine different approaches. This analysis provided quantitative estimates of between-subject and between-template variability for 16 functionally defined regions, which were then used to explicitly model the spatial uncertainty associated with each reported coordinate. Secondly, instead of testing for an above-chance clustering between foci, the revised algorithm assesses above-chance clustering between experiments. The spatial relationship between foci in a given experiment is now assumed to be fixed and ALE results are assessed against a null-distribution of random spatial association between experiments. Critically, this modification entails a change from fixed- to random-effects inference in ALE analysis allowing generalization of the results to the entire population of studies analyzed. By comparative analysis of real and simulated data, the authors showed that the revised ALE-algorithm overcomes conceptual problems of former meta-analyses and increases the specificity of the ensuing results without loosing the sensitivity of the original approach. It may thus provide a methodologically improved tool for coordinate-based meta-analyses on functional imaging data.


Graded functional organization in the left inferior frontal gyrus: evidence from task-free and task-based functional connectivity.

  • Veronica Diveica‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2023‎

The left inferior frontal gyrus has been ascribed key roles in numerous cognitive domains, such as language and executive function. However, its functional organization is unclear. Possibilities include a singular domain-general function, or multiple functions that can be mapped onto distinct subregions. Furthermore, spatial transition in function may be either abrupt or graded. The present study explored the topographical organization of the left inferior frontal gyrus using a bimodal data-driven approach. We extracted functional connectivity gradients from (i) resting-state fMRI time-series and (ii) coactivation patterns derived meta-analytically from heterogenous sets of task data. We then sought to characterize the functional connectivity differences underpinning these gradients with seed-based resting-state functional connectivity, meta-analytic coactivation modeling and functional decoding analyses. Both analytic approaches converged on graded functional connectivity changes along 2 main organizational axes. An anterior-posterior gradient shifted from being preferentially associated with high-level control networks (anterior functional connectivity) to being more tightly coupled with perceptually driven networks (posterior). A second dorsal-ventral axis was characterized by higher connectivity with domain-general control networks on one hand (dorsal functional connectivity), and with the semantic network, on the other (ventral). These results provide novel insights into an overarching graded functional organization of the functional connectivity that explains its role in multiple cognitive domains.


Graded functional organisation in the left inferior frontal gyrus: evidence from task-free and task-based functional connectivity.

  • Veronica Diveica‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The left inferior frontal gyrus (LIFG) has been ascribed key roles in numerous cognitive domains, including language, executive function and social cognition. However, its functional organisation, and how the specific areas implicated in these cognitive domains relate to each other, is unclear. Possibilities include that the LIFG underpins a domain-general function or, alternatively, that it is characterized by functional differentiation, which might occur in either a discrete or a graded pattern. The aim of the present study was to explore the topographical organisation of the LIFG using a bimodal data-driven approach. To this end, we extracted functional connectivity (FC) gradients from 1) the resting-state fMRI time-series of 150 participants (77 female), and 2) patterns of co-activation derived meta-analytically from task data across a diverse set of cognitive domains. We then sought to characterize the FC differences driving these gradients with seed-based resting-state FC and meta-analytic co-activation modelling analyses. Both analytic approaches converged on an FC profile that shifted in a graded fashion along two main organisational axes. An anterior-posterior gradient shifted from being preferentially associated with high-level control networks (anterior LIFG) to being more tightly coupled with perceptually-driven networks (posterior). A second dorsal-ventral axis was characterized by higher connectivity with domain-general control networks on one hand (dorsal LIFG), and with the semantic network, on the other (ventral). These results provide novel insights into a graded functional organisation of the LIFG underpinning both task-free and task-constrained mental states, and suggest that the LIFG is an interface between distinct large-scale functional networks.


Methods for decoding cortical gradients of functional connectivity.

  • Julio A Peraza‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Macroscale gradients have emerged as a central principle for understanding functional brain organization. Previous studies have demonstrated that a principal gradient of connectivity in the human brain exists, with unimodal primary sensorimotor regions situated at one end and transmodal regions associated with the default mode network and representative of abstract functioning at the other. The functional significance and interpretation of macroscale gradients remains a central topic of discussion in the neuroimaging community, with some studies demonstrating that gradients may be described using meta-analytic functional decoding techniques. However, additional methodological development is necessary to fully leverage available meta-analytic methods and resources and quantitatively evaluate their relative performance. Here, we conducted a comprehensive series of analyses to investigate and improve the framework of data-driven, meta-analytic methods, thereby establishing a principled approach for gradient segmentation and functional decoding. We found that a two-segment solution determined by a k-means segmentation approach and an LDA-based meta-analysis combined with the NeuroQuery database was the optimal combination of methods for decoding functional connectivity gradients. Finally, we proposed a method for decoding additional components of the gradient decomposition. The current work aims to provide recommendations on best practices and flexible methods for gradient-based functional decoding of fMRI data.


Functional Characterization of Atrophy Patterns Related to Cognitive Impairment.

  • Gereon J Schnellbächer‎ et al.
  • Frontiers in neurology‎
  • 2020‎

Introduction: Mild cognitive impairment (MCI) is a heterogenous syndrome considered as a risk factor for developing dementia. Previous work examining morphological brain changes in MCI has identified a temporo-parietal atrophy pattern that suggests a common neuroanatomical denominator of cognitive impairment. Using functional connectivity analyses of structurally affected regions in MCI, we aimed to investigate and characterize functional networks formed by these regions that appear to be particularly vulnerable to disease-related disruptions. Methods: Areas of convergent atrophy in MCI were derived from a quantitative meta-analysis and encompassed left and right medial temporal (i.e., hippocampus, amygdala), as well as parietal regions (precuneus), which were defined as seed regions for connectivity analyses. Both task-based meta-analytical connectivity modeling (MACM) based on the BrainMap database and task-free resting-state functional MRI in a large cohort of older adults from the 1000BRAINS study were applied. We additionally assessed behavioral characteristics associated with the seed regions using BrainMap meta-data and investigated correlations of resting-state connectivity with age. Results: The left temporal seed showed stronger associations with a fronto-temporal network, whereas the right temporal atrophy cluster was more linked to cortico-striatal regions. In accordance with this, behavioral analysis indicated an emphasis of the left temporal seed on language generation, and the right temporal seed was associated with the domains of emotion and attention. Task-independent co-activation was more pronounced in the parietal seed, which demonstrated stronger connectivity with a frontoparietal network and associations with introspection and social cognition. Correlation analysis revealed both decreasing and increasing functional connectivity with higher age that may add to pathological processes but also indicates compensatory mechanisms of functional reorganization with increasing age. Conclusion: Our findings provide an important pathophysiological link between morphological changes and the clinical relevance of major structural damage in MCI. Multimodal analysis of functional networks related to areas of MCI-typical atrophy may help to explain cognitive decline and behavioral alterations not tractable by a mere anatomical interpretation and therefore contribute to prognostic evaluations.


Connectivity and functional profiling of abnormal brain structures in pedophilia.

  • Timm B Poeppl‎ et al.
  • Human brain mapping‎
  • 2015‎

Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia.


Automated annotation of functional imaging experiments via multi-label classification.

  • Matthew D Turner‎ et al.
  • Frontiers in neuroscience‎
  • 2013‎

Identifying the experimental methods in human neuroimaging papers is important for grouping meaningfully similar experiments for meta-analyses. Currently, this can only be done by human readers. We present the performance of common machine learning (text mining) methods applied to the problem of automatically classifying or labeling this literature. Labeling terms are from the Cognitive Paradigm Ontology (CogPO), the text corpora are abstracts of published functional neuroimaging papers, and the methods use the performance of a human expert as training data. We aim to replicate the expert's annotation of multiple labels per abstract identifying the experimental stimuli, cognitive paradigms, response types, and other relevant dimensions of the experiments. We use several standard machine learning methods: naive Bayes (NB), k-nearest neighbor, and support vector machines (specifically SMO or sequential minimal optimization). Exact match performance ranged from only 15% in the worst cases to 78% in the best cases. NB methods combined with binary relevance transformations performed strongly and were robust to overfitting. This collection of results demonstrates what can be achieved with off-the-shelf software components and little to no pre-processing of raw text.


Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation.

  • Simon B Eickhoff‎ et al.
  • NeuroImage‎
  • 2011‎

The organization of the cerebral cortex into distinct modules may be described along several dimensions, most importantly, structure, connectivity and function. Identification of cortical modules by differences in whole-brain connectivity profiles derived from diffusion tensor imaging or resting state correlations has already been shown. These approaches, however, carry no task-related information. Hence, inference on the functional relevance of the ensuing parcellation remains tentative. Here, we demonstrate, that Meta-Analytic Connectivity Modeling (MACM) allows the delineation of cortical modules based on their whole-brain co-activation pattern across databased neuroimaging results. Using a model free approach, two regions of the medial pre-motor cortex, SMA and pre-SMA were differentiated solely based on their functional connectivity. Assessing the behavioral domain and paradigm class meta-data of the experiments associated with the clusters derived from the co-activation based parcellation moreover allows the identification of their functional characteristics. The ensuing hypotheses about functional differentiation and distinct functional connectivity between pre-SMA and SMA were then explicitly tested and confirmed in independent datasets using functional and resting state fMRI. Co-activation based parcellation thus provides a new perspective for identifying modules of functional connectivity and linking them to functional properties, hereby generating new and subsequently testable hypotheses about the organization of cortical modules.


Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington's disease.

  • Imis Dogan‎ et al.
  • NeuroImage. Clinical‎
  • 2015‎

Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by a complex neuropsychiatric phenotype. In a recent meta-analysis we identified core regions of consistent neurodegeneration in premanifest HD in the striatum and middle occipital gyrus (MOG). For early manifest HD convergent evidence of atrophy was most prominent in the striatum, motor cortex (M1) and inferior frontal junction (IFJ). The aim of the present study was to functionally characterize this topography of brain atrophy and to investigate differential connectivity patterns formed by consistent cortico-striatal atrophy regions in HD. Using areas of striatal and cortical atrophy at different disease stages as seeds, we performed task-free resting-state and task-based meta-analytic connectivity modeling (MACM). MACM utilizes the large data source of the BrainMap database and identifies significant areas of above-chance co-activation with the seed-region via the activation-likelihood-estimation approach. In order to delineate functional networks formed by cortical as well as striatal atrophy regions we computed the conjunction between the co-activation profiles of striatal and cortical seeds in the premanifest and manifest stages of HD, respectively. Functional characterization of the seeds was obtained using the behavioral meta-data of BrainMap. Cortico-striatal atrophy seeds of the premanifest stage of HD showed common co-activation with a rather cognitive network including the striatum, anterior insula, lateral prefrontal, premotor, supplementary motor and parietal regions. A similar but more pronounced co-activation pattern, additionally including the medial prefrontal cortex and thalamic nuclei was found with striatal and IFJ seeds at the manifest HD stage. The striatum and M1 were functionally connected mainly to premotor and sensorimotor areas, posterior insula, putamen and thalamus. Behavioral characterization of the seeds confirmed that experiments activating the MOG or IFJ in conjunction with the striatum were associated with cognitive functions, while the network formed by M1 and the striatum was driven by motor-related tasks. Thus, based on morphological changes in HD, we identified functionally distinct cortico-striatal networks resembling a cognitive and motor loop, which may be prone to early disruptions in different stages of the disease and underlie HD-related cognitive and motor symptom profiles. Our findings provide an important link between morphometrically defined seed-regions and corresponding functional circuits highlighting the functional and ensuing clinical relevance of structural damage in HD.


Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala.

  • Jennifer L Robinson‎ et al.
  • Human brain mapping‎
  • 2010‎

Functional neuroimaging has evolved into an indispensable tool for noninvasively investigating brain function. A recent development of such methodology is the creation of connectivity models for brain regions and related networks, efforts that have been inhibited by notable limitations. We present a new method for ascertaining functional connectivity of specific brain structures using metaanalytic connectivity modeling (MACM), along with validation of our method using a nonhuman primate database. Drawing from decades of neuroimaging research and spanning multiple behavioral domains, the method overcomes many weaknesses of conventional connectivity analyses and provides a simple, automated alternative to developing accurate and robust models of anatomically-defined human functional connectivity. Applying MACM to the amygdala, a small structure of the brain with a complex network of connections, we found high coherence with anatomical studies in nonhuman primates as well as human-based theoretical models of emotive-cognitive integration, providing evidence for this novel method's utility.


Dysregulated left inferior parietal activity in schizophrenia and depression: functional connectivity and characterization.

  • Veronika I Müller‎ et al.
  • Frontiers in human neuroscience‎
  • 2013‎

The inferior parietal cortex (IPC) is a heterogeneous region that is known to be involved in a multitude of diverse different tasks and processes, though its contribution to these often-complex functions is yet poorly understood. In a previous study we demonstrated that patients with depression failed to deactivate the left IPC during processing of congruent audiovisual information. We now found the same dysregulation (same region and condition) in schizophrenia. By using task-independent (resting state) and task-dependent meta-analytic connectivity modeling (MACM) analyses we aimed at characterizing this particular region with regard to its connectivity and function. Across both approaches, results revealed functional connectivity of the left inferior parietal seed region with bilateral IPC, precuneus and posterior cingulate cortex (PrC/PCC), medial orbitofrontal cortex (mOFC), left middle frontal (MFG) as well as inferior frontal (IFG) gyrus. Network-level functional characterization further revealed that on the one hand, all interconnected regions are part of a network involved in memory processes. On the other hand, sub-networks are formed when emotion, language, social cognition and reasoning processes are required. Thus, the IPC-region that is dysregulated in both depression and schizophrenia is functionally connected to a network of regions which, depending on task demands may form sub-networks. These results therefore indicate that dysregulation of left IPC in depression and schizophrenia might not only be connected to deficits in audiovisual integration, but is possibly also associated to impaired memory and deficits in emotion processing in these patient groups.


An investigation of the structural, connectional, and functional subspecialization in the human amygdala.

  • Danilo Bzdok‎ et al.
  • Human brain mapping‎
  • 2013‎

Although the amygdala complex is a brain area critical for human behavior, knowledge of its subspecialization is primarily derived from experiments in animals. We here employed methods for large-scale data mining to perform a connectivity-derived parcellation of the human amygdala based on whole-brain coactivation patterns computed for each seed voxel. Voxels within the histologically defined human amygdala were clustered into distinct groups based on their brain-wide coactivation maps. Using this approach, connectivity-based parcellation divided the amygdala into three distinct clusters that are highly consistent with earlier microstructural distinctions. Meta-analytic connectivity modelling then revealed the derived clusters' brain-wide connectivity patterns, while meta-data profiling allowed their functional characterization. These analyses revealed that the amygdala's laterobasal nuclei group was associated with coordinating high-level sensory input, whereas its centromedial nuclei group was linked to mediating attentional, vegetative, and motor responses. The often-neglected superficial nuclei group emerged as particularly sensitive to olfactory and probably social information processing. The results of this model-free approach support the concordance of structural, connectional, and functional organization in the human amygdala and point to the importance of acknowledging the heterogeneity of this region in neuroimaging research.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: