2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 117 papers

Vertebrate Cryptochromes are Vestigial Flavoproteins.

  • Roger J Kutta‎ et al.
  • Scientific reports‎
  • 2017‎

All cryptochromes are currently classified as flavoproteins. In animals their best-described role is as components of the circadian clock. This circadian function is variable, and can be either light-dependent or -independent; the molecular origin of this difference is unknown. Type I animal cryptochromes are photoreceptors that entrain an organism's clock to its environment, whereas Type II (including mammals) regulate circadian timing in a light-independent manner. Here, we reveal that, in contrast to Type I, Type II animal cryptochromes lack the structural features to securely bind the photoactive flavin cofactor. We provide a molecular basis for the distinct circadian roles of different animal cryptochromes, which also has significant implications for the putative role of Type II cryptochromes in animal photomagnetoreception.


Chronic Hypoxia Enhances β-Oxidation-Dependent Electron Transport via Electron Transferring Flavoproteins.

  • Dominik C Fuhrmann‎ et al.
  • Cells‎
  • 2019‎

Hypoxia poses a stress to cells and decreases mitochondrial respiration, in part by electron transport chain (ETC) complex reorganization. While metabolism under acute hypoxia is well characterized, alterations under chronic hypoxia largely remain unexplored. We followed oxygen consumption rates in THP-1 monocytes during acute (16 h) and chronic (72 h) hypoxia, compared to normoxia, to analyze the electron flows associated with glycolysis, glutamine, and fatty acid oxidation. Oxygen consumption under acute hypoxia predominantly demanded pyruvate, while under chronic hypoxia, fatty acid- and glutamine-oxidation dominated. Chronic hypoxia also elevated electron-transferring flavoproteins (ETF), and the knockdown of ETF⁻ubiquinone oxidoreductase lowered mitochondrial respiration under chronic hypoxia. Metabolomics revealed an increase in citrate under chronic hypoxia, which implied glutamine processing to α-ketoglutarate and citrate. Expression regulation of enzymes involved in this metabolic shunting corroborated this assumption. Moreover, the expression of acetyl-CoA carboxylase 1 increased, thus pointing to fatty acid synthesis under chronic hypoxia. Cells lacking complex I, which experienced a markedly impaired respiration under normoxia, also shifted their metabolism to fatty acid-dependent synthesis and usage. Taken together, we provide evidence that chronic hypoxia fuels the ETC via ETFs, increasing fatty acid production and consumption via the glutamine-citrate-fatty acid axis.


Evolution of function in the "two dinucleotide binding domains" flavoproteins.

  • Sunil Ojha‎ et al.
  • PLoS computational biology‎
  • 2007‎

Structural and biochemical constraints force some segments of proteins to evolve more slowly than others, often allowing identification of conserved structural or sequence motifs that can be associated with substrate binding properties, chemical mechanisms, and molecular functions. We have assessed the functional and structural constraints imposed by cofactors on the evolution of new functions in a superfamily of flavoproteins characterized by two-dinucleotide binding domains, the "two dinucleotide binding domains" flavoproteins (tDBDF) superfamily. Although these enzymes catalyze many different types of oxidation/reduction reactions, each is initiated by a stereospecific hydride transfer reaction between two cofactors, a pyridine nucleotide and flavin adenine dinucleotide (FAD). Sequence and structural analysis of more than 1,600 members of the superfamily reveals new members and identifies details of the evolutionary connections among them. Our analysis shows that in all of the highly divergent families within the superfamily, these cofactors adopt a conserved configuration optimal for stereospecific hydride transfer that is stabilized by specific interactions with amino acids from several motifs distributed among both dinucleotide binding domains. The conservation of cofactor configuration in the active site restricts the pyridine nucleotide to interact with FAD from the re-side, limiting the flow of electrons from the re-side to the si-side. This directionality of electron flow constrains interactions with the different partner proteins of different families to occur on the same face of the cofactor binding domains. As a result, superimposing the structures of tDBDFs aligns not only these interacting proteins, but also their constituent electron acceptors, including heme and iron-sulfur clusters. Thus, not only are specific aspects of the cofactor-directed chemical mechanism conserved across the superfamily, the constraints they impose are manifested in the mode of protein-protein interactions. Overlaid on this foundation of conserved interactions, nature has conscripted different protein partners to serve as electron acceptors, thereby generating diversification of function across the superfamily.


Machine Learning for Efficient Prediction of Protein Redox Potential: The Flavoproteins Case.

  • Bruno Giovanni Galuzzi‎ et al.
  • Journal of chemical information and modeling‎
  • 2022‎

Determining the redox potentials of protein cofactors and how they are influenced by their molecular neighborhoods is essential for basic research and many biotechnological applications, from biosensors and biocatalysis to bioremediation and bioelectronics. The laborious determination of redox potential with current experimental technologies pushes forward the need for computational approaches that can reliably predict it. Although current computational approaches based on quantum and molecular mechanics are accurate, their large computational costs hinder their usage. In this work, we explored the possibility of using more efficient QSPR models based on machine learning (ML) for the prediction of protein redox potential, as an alternative to classical approaches. As a proof of concept, we focused on flavoproteins, one of the most important families of enzymes directly involved in redox processes. To train and test different ML models, we retrieved a dataset of flavoproteins with a known midpoint redox potential (Em) and 3D structure. The features of interest, accounting for both short- and long-range effects of the protein matrix on the flavin cofactor, have been automatically extracted from each protein PDB file. Our best ML model (XGB) has a performance error below 1 kcal/mol (∼36 mV), comparing favorably to more sophisticated computational approaches. We also provided indications on the features that mostly affect the Em value, and when possible, we rationalized them on the basis of previous studies.


Contrasting roles for two conserved arginines: Stabilizing flavin semiquinone or quaternary structure, in bifurcating electron transfer flavoproteins.

  • Nishya Mohamed-Raseek‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

Bifurcating electron transfer flavoproteins (Bf ETFs) are important redox enzymes that contain two flavin adenine dinucleotide (FAD) cofactors, with contrasting reactivities and complementary roles in electron bifurcation. However, for both the "electron transfer" (ET) and the "bifurcating" (Bf) FADs, the only charged amino acid within 5 Å of the flavin is a conserved arginine (Arg) residue. To understand how the two sites produce different reactivities utilizing the same residue, we investigated the consequences of replacing each of the Arg residues with lysine, glutamine, histidine, or alanine. We show that absence of a positive charge in the ET site diminishes accumulation of the anionic semiquinone (ASQ) that enables the ET flavin to act as a single electron carrier, due to depression of the oxidized versus. ASQ reduction midpoint potential, E°OX/ASQ. Perturbation of the ET site also affected the remote Bf site, whereas abrogation of Bf FAD binding accelerated chemical modification of the ET flavin. In the Bf site, removal of the positive charge impaired binding of FAD or AMP, resulting in unstable protein. Based on pH dependence, we propose that the Bf site Arg interacts with the phosphate(s) of Bf FAD or AMP, bridging the domain interface via a conserved peptide loop ("zipper") and favoring nucleotide binding. We further propose a model that rationalizes conservation of the Bf site Arg even in non-Bf ETFs, as well as AMP's stabilizing role in the latter, and provides a mechanism for coupling Bf flavin redox changes to domain-scale motion.


Synthesis and Antibacterial Activity of Metal(loid) Nanostructures by Environmental Multi-Metal(loid) Resistant Bacteria and Metal(loid)-Reducing Flavoproteins.

  • Maximiliano Figueroa‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS), which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loid)s. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro. All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter, and Exiguobacterium genera. Most strains displayed metal(loid)-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite ( TeO32- ) and tetrachloro aurate ( AuCl4- ) reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite ( SeO32- ) and silver (Ag+) reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09 crude extracts showed MICs of 45- and 66- μg/ml for E. coli and L. monocytogenes, respectively. Similar MIC values (40 and 82 μg/ml, respectively) were observed for TeNS generated using crude extracts from gorA-overexpressing E. coli. In turn, AuNS MICs for E. coli and L. monocytogenes were 64- and 68- μg/ml, respectively.


The reductive half-reaction of two bifurcating electron-transferring flavoproteins: Evidence for changes in flavin reduction potentials mediated by specific conformational changes.

  • Wayne Vigil‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

The EtfAB components of two bifurcating flavoprotein systems, the crotonyl-CoA-dependent NADH:ferredoxin oxidoreductase from the bacterium Megasphaera elsdenii and the menaquinone-dependent NADH:ferredoxin oxidoreductase from the archaeon Pyrobaculum aerophilum, have been investigated. With both proteins, we find that removal of the electron-transferring flavin adenine dinucleotide (FAD) moiety from both proteins results in an uncrossing of the reduction potentials of the remaining bifurcating FAD; this significantly stabilizes the otherwise very unstable semiquinone state, which accumulates over the course of reductive titrations with sodium dithionite. Furthermore, reduction of both EtfABs depleted of their electron-transferring FAD by NADH was monophasic with a hyperbolic dependence of reaction rate on the concentration of NADH. On the other hand, NADH reduction of the replete proteins containing the electron-transferring FAD was multiphasic, consisting of a fast phase comparable to that seen with the depleted proteins followed by an intermediate phase that involves significant accumulation of FAD⋅-, again reflecting uncrossing of the half-potentials of the bifurcating FAD. This is then followed by a slow phase that represents the slow reduction of the electron-transferring FAD to FADH-, with reduction of the now fully reoxidized bifurcating FAD by a second equivalent of NADH. We suggest that the crossing and uncrossing of the reduction half-potentials of the bifurcating FAD is due to specific conformational changes that have been structurally characterized.


The flavoproteome of the yeast Saccharomyces cerevisiae.

  • Venugopal Gudipati‎ et al.
  • Biochimica et biophysica acta‎
  • 2014‎

Genome analysis of the yeast Saccharomyces cerevisiae identified 68 genes encoding flavin-dependent proteins (1.1% of protein encoding genes) to which 47 distinct biochemical functions were assigned. The majority of flavoproteins operate in mitochondria where they participate in redox processes revolving around the transfer of electrons to the electron transport chain. In addition, we found that flavoenzymes play a central role in various aspects of iron metabolism, such as iron uptake, the biogenesis of iron-sulfur clusters and insertion of the heme cofactor into apocytochromes. Another important group of flavoenzymes is directly (Dus1-4p and Mto1p) or indirectly (Tyw1p) involved in reactions leading to tRNA-modifications. Despite the wealth of genetic information available for S. cerevisiae, we were surprised that many flavoproteins are poorly characterized biochemically. For example, the role of the yeast flavodoxins Pst2p, Rfs1p and Ycp4p with regard to their electron donor and acceptor is presently unknown. Similarly, the function of the heterodimeric Aim45p/Cir1p, which is homologous to the electron-transferring flavoproteins of higher eukaryotes, in electron transfer processes occurring in the mitochondrial matrix remains to be elucidated. This lack of information extends to the five membrane proteins involved in riboflavin or FAD transport as well as FMN and FAD homeostasis within the yeast cell. Nevertheless, several yeast flavoproteins, were identified as convenient model systems both in terms of their mechanism of action as well as structurally to improve our understanding of diseases caused by dysfunctional human flavoprotein orthologs.


Turning a monocovalent flavoprotein into a bicovalent flavoprotein by structure-inspired mutagenesis.

  • Malgorzata M Kopacz‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2014‎

A recently discovered class of bicovalent flavoproteins is an interesting group of enzymes because of their unusual cofactor binding mode, their open active sites and the bulky substrates they can accept. Through a sequence comparison study we have identified a conserved sequence region in bicovalent flavoproteins that is different from monocovalent flavoproteins. Based on this and the available structural information we have designed mutants of the prototype monocovalent flavoprotein, 6-hydroxy-d-nicotine oxidase (6HDNO), in order to introduce a second cofactor-protein linkage. Two amino acid replacements, namely histidine 130 to a cysteine and leucine 138 to a histidine, were sufficient to create a bicovalent 6HDNO. The introduced cysteine forms a covalent bond with FAD as found in natural bicovalent flavoproteins, while the second mutation was found to be essential to facilitate the formation of the cysteinyl linkage. This points to an important role of the introduced histidine in stabilizing a negative charge of the isoalloxazine ring during covalent flavinylation. The His130Cys/Leu138His 6HDNO is still active and shows a higher midpoint redox potential when compared to wild-type 6HDNO. This agrees well with the previous studies that have shown that bicovalent flavoenzymes have extremely high redox potentials.


Mining the Flavoproteome of Brucella ovis, the Brucellosis Causing Agent in Ovis aries.

  • Martha Minjárez-Sáenz‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Flavoproteins are a diverse class of proteins that are mostly enzymes and contain as cofactors flavin mononucleotide (FMN) and/or flavin adenine dinucleotide (FAD), which enable them to participate in a wide range of physiological reactions. We have compiled 78 potential proteins building the flavoproteome of Brucella ovis (B. ovis), the causative agent of ovine brucellosis. The curated list of flavoproteins here reported is based on (i) the analysis of sequence, structure and function of homologous proteins, and their classification according to their structural domains, clans, and expected enzymatic functions; (ii) the constructed phylogenetic trees of enzyme functional classes using 19 Brucella strains and 26 pathogenic and/or biotechnological relevant alphaproteobacteria together with B. ovis; and (iii) the evaluation of the genetic context for each entry. Candidates account for ∼2.7% of the B. ovis proteome, and 75% of them use FAD as cofactor. Only 55% of these flavoproteins belong to the core proteome of Brucella and contribute to B. ovis processes involved in maintenance activities, survival and response to stress, virulence, and/or infectivity. Several of the predicted flavoproteins are highly divergent in Brucella genus from revised proteins and for them it is difficult to envisage a clear function. This might indicate modified catalytic activities or even divergent processes and mechanisms still not identified. We have also detected the lack of some functional flavoenzymes in B. ovis, which might contribute to it being nonzoonotic. Finally, potentiality of B. ovis flavoproteome as the source of antimicrobial targets or biocatalyst is discussed. IMPORTANCE Some microorganisms depend heavily on flavin-dependent activities, but others maintain them at a minimum. Knowledge about flavoprotein content and functions in different microorganisms will help to identify their metabolic requirements, as well as to benefit either industry or health. Currently, most flavoproteins from the sheep pathogen Brucella ovis are only automatically annotated in databases, and only two have been experimentally studied. Indeed, certain homologues with unknown function are not characterized, and they might relate to still not identified mechanisms or processes. Our research has identified 78 members that comprise its flavoproteome, 76 of them flavoenzymes, which mainly relate to bacteria survival, virulence, and/or infectivity. The list of flavoproteins here presented allows us to better understand the peculiarities of Brucella ovis and can be applied as a tool to search for candidates as new biocatalyst or antimicrobial targets.


Flavin adenine dinucleotide rescues the phenotype of frataxin deficiency.

  • Pilar Gonzalez-Cabo‎ et al.
  • PloS one‎
  • 2010‎

Friedreich ataxia is a neurodegenerative disease caused by the lack of frataxin, a mitochondrial protein. We previously demonstrated that frataxin interacts with complex II subunits of the electronic transport chain (ETC) and putative electronic transfer flavoproteins, suggesting that frataxin could participate in the oxidative phosphorylation.


Vitamin B2 enables regulation of fasting glucose availability.

  • Peter M Masschelin‎ et al.
  • eLife‎
  • 2023‎

Flavin adenine dinucleotide (FAD) interacts with flavoproteins to mediate oxidation-reduction reactions required for cellular energy demands. Not surprisingly, mutations that alter FAD binding to flavoproteins cause rare inborn errors of metabolism (IEMs) that disrupt liver function and render fasting intolerance, hepatic steatosis, and lipodystrophy. In our study, depleting FAD pools in mice with a vitamin B2-deficient diet (B2D) caused phenotypes associated with organic acidemias and other IEMs, including reduced body weight, hypoglycemia, and fatty liver disease. Integrated discovery approaches revealed B2D tempered fasting activation of target genes for the nuclear receptor PPARα, including those required for gluconeogenesis. We also found PPARα knockdown in the liver recapitulated B2D effects on glucose excursion and fatty liver disease in mice. Finally, treatment with the PPARα agonist fenofibrate activated the integrated stress response and refilled amino acid substrates to rescue fasting glucose availability and overcome B2D phenotypes. These findings identify metabolic responses to FAD availability and nominate strategies for the management of organic acidemias and other rare IEMs.


Assessing the Performance of Non-Equilibrium Thermodynamic Integration in Flavodoxin Redox Potential Estimation.

  • Giuseppe Silvestri‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Flavodoxins are enzymes that contain the redox-active flavin mononucleotide (FMN) cofactor and play a crucial role in numerous biological processes, including energy conversion and electron transfer. Since the redox characteristics of flavodoxins are significantly impacted by the molecular environment of the FMN cofactor, the evaluation of the interplay between the redox properties of the flavin cofactor and its molecular surroundings in flavoproteins is a critical area of investigation for both fundamental research and technological advancements, as the electrochemical tuning of flavoproteins is necessary for optimal interaction with redox acceptor or donor molecules. In order to facilitate the rational design of biomolecular devices, it is imperative to have access to computational tools that can accurately predict the redox potential of both natural and artificial flavoproteins. In this study, we have investigated the feasibility of using non-equilibrium thermodynamic integration protocols to reliably predict the redox potential of flavodoxins. Using as a test set the wild-type flavodoxin from Clostridium Beijerinckii and eight experimentally characterized single-point mutants, we have computed their redox potential. Our results show that 75% (6 out of 8) of the calculated reaction free energies are within 1 kcal/mol of the experimental values, and none exceed an error of 2 kcal/mol, confirming that non-equilibrium thermodynamic integration is a trustworthy tool for the quantitative estimation of the redox potential of this biologically and technologically significant class of enzymes.


Silencing of FAD synthase gene in Caenorhabditis elegans upsets protein homeostasis and impacts on complex behavioral patterns.

  • Vania C Liuzzi‎ et al.
  • Biochimica et biophysica acta‎
  • 2012‎

FAD synthase is a ubiquitous enzyme that catalyses the last step of FAD biosynthesis, allowing for the biogenesis of several flavoproteins. In humans different isoforms are generated by alternative splicing, isoform 1 being localized in mitochondria. Homology searching in Caenorabditis elegans leads to the identification of two human FAD synthase homologues, coded by the single copy gene R53.1.


Fine spectral tuning of a flavin-binding fluorescent protein for multicolor imaging.

  • Andrey Nikolaev‎ et al.
  • The Journal of biological chemistry‎
  • 2023‎

Flavin-binding fluorescent proteins are promising genetically encoded tags for microscopy. However, spectral properties of their chromophores (riboflavin, flavin mononucleotide, and flavin adenine dinucleotide) are notoriously similar even between different protein families, which limits applications of flavoproteins in multicolor imaging. Here, we present a palette of 22 finely tuned fluorescent tags based on the thermostable LOV domain from Chloroflexus aggregans. We performed site saturation mutagenesis of three amino acid positions in the flavin-binding pocket, including the photoactive cysteine, to obtain variants with fluorescence emission maxima uniformly covering the wavelength range from 486 to 512 nm. We demonstrate three-color imaging based on spectral separation and two-color fluorescence lifetime imaging of bacteria, as well as two-color imaging of mammalian cells (HEK293T), using the proteins from the palette. These results highlight the possibility of fine spectral tuning of flavoproteins and pave the way for further applications of flavin-binding fluorescent proteins in fluorescence microscopy.


Shining a Spotlight on Methyl Groups: Photochemically Induced Dynamic Nuclear Polarization Spectroscopy of 5-Deazariboflavin and Its Nor Analogs.

  • Sabrina Panter‎ et al.
  • International journal of molecular sciences‎
  • 2024‎

5-Deazaflavins are analogs of naturally occurring flavin cofactors. They serve as substitutes for natural flavin cofactors to investigate and modify the reaction pathways of flavoproteins. Demethylated 5-deazaflavins are potential candidates for artificial cofactors, allowing us to fine-tune the reaction kinetics and absorption characteristics of flavoproteins. In this contribution, demethylated 5-deazariboflavin radicals are investigated (1) to assess the influence of the methyl groups on the electronic structure of the 5-deazaflavin radical and (2) to explore their photophysical properties with regard to their potential as artificial cofactors. We determined the proton hyperfine structure of demethylated 5-deazariboflavins using photochemically induced dynamic nuclear polarization (photo-CIDNP) spectroscopy, as well as density functional theory (DFT). To provide context, we compare our findings to a study of flavin mononucleotide (FMN) derivatives. We found a significant influence of the methylation pattern on the absorption properties, as well as on the proton hyperfine coupling ratios of the xylene moiety, which appears to be solvent-dependent. This effect is enhanced by the replacement of N5 by C5-H in 5-deazaflavin derivatives compared to their respective flavin counterparts.


Functional imaging of mitochondria in saponin-permeabilized mice muscle fibers.

  • A V Kuznetsov‎ et al.
  • The Journal of cell biology‎
  • 1998‎

Confocal laser-scanning and digital fluorescence imaging microscopy were used to quantify the mitochondrial autofluorescence changes of NAD(P)H and flavoproteins in unfixed saponin-permeabilized myofibers from mice quadriceps muscle tissue. Addition of mitochondrial substrates, ADP, or cyanide led to redox state changes of the mitochondrial NAD system. These changes were detected by ratio imaging of the autofluorescence intensities of fluorescent flavoproteins and NAD(P)H, showing inverse fluorescence behavior. The flavoprotein signal was colocalized with the potentiometric mitochondria-specific dye dimethylaminostyryl pyridyl methyl iodide (DASPMI), or with MitoTrackerTM Green FM, a constitutive marker for mitochondria. Within individual myofibers we detected topological mitochondrial subsets with distinct flavoprotein autofluorescence levels, equally responding to induced rate changes of the oxidative phosphorylation. The flavoprotein autofluorescence levels of these subsets differed by a factor of four. This heterogeneity was substantiated by flow-cytometric analysis of flavoprotein and DASPMI fluorescence changes of individual mitochondria isolated from mice skeletal muscle. Our data provide direct evidence that mitochondria in single myofibers are distinct subsets at the level of an intrinsic fluorescent marker of the mitochondrial NAD-redox system. Under the present experimental conditions these subsets show similar functional responses.


Ultrafast photooxidation of protein-bound anionic flavin radicals.

  • Bo Zhuang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

The photophysical properties of anionic semireduced flavin radicals are largely unknown despite their importance in numerous biochemical reactions. Here, we studied the photoproducts of these intrinsically unstable species in five different flavoprotein oxidases where they can be stabilized, including the well-characterized glucose oxidase. Using ultrafast absorption and fluorescence spectroscopy, we unexpectedly found that photoexcitation systematically results in the oxidation of protein-bound anionic flavin radicals on a time scale of less than ∼100 fs. The thus generated photoproducts decay back in the remarkably narrow 10- to 20-ps time range. Based on molecular dynamics and quantum mechanics computations, positively charged active-site histidine and arginine residues are proposed to be the electron acceptor candidates. Altogether, we established that, in addition to the commonly known and extensively studied photoreduction of oxidized flavins in flavoproteins, the reverse process (i.e., the photooxidation of anionic flavin radicals) can also occur. We propose that this process may constitute an excited-state deactivation pathway for protein-bound anionic flavin radicals in general. This hitherto undocumented photochemical reaction in flavoproteins further extends the family of flavin photocycles.


The human flavoproteome.

  • Wolf-Dieter Lienhart‎ et al.
  • Archives of biochemistry and biophysics‎
  • 2013‎

Vitamin B2 (riboflavin) is an essential dietary compound used for the enzymatic biosynthesis of FMN and FAD. The human genome contains 90 genes encoding for flavin-dependent proteins, six for riboflavin uptake and transformation into the active coenzymes FMN and FAD as well as two for the reduction to the dihydroflavin form. Flavoproteins utilize either FMN (16%) or FAD (84%) while five human flavoenzymes have a requirement for both FMN and FAD. The majority of flavin-dependent enzymes catalyze oxidation-reduction processes in primary metabolic pathways such as the citric acid cycle, β-oxidation and degradation of amino acids. Ten flavoproteins occur as isozymes and assume special functions in the human organism. Two thirds of flavin-dependent proteins are associated with disorders caused by allelic variants affecting protein function. Flavin-dependent proteins also play an important role in the biosynthesis of other essential cofactors and hormones such as coenzyme A, coenzyme Q, heme, pyridoxal 5'-phosphate, steroids and thyroxine. Moreover, they are important for the regulation of folate metabolites by using tetrahydrofolate as cosubstrate in choline degradation, reduction of N-5.10-methylenetetrahydrofolate to N-5-methyltetrahydrofolate and maintenance of the catalytically competent form of methionine synthase. These flavoenzymes are discussed in detail to highlight their role in health and disease.


Prediction of FAD interacting residues in a protein from its primary sequence using evolutionary information.

  • Nitish K Mishra‎ et al.
  • BMC bioinformatics‎
  • 2010‎

Flavin binding proteins (FBP) plays a critical role in several biological functions such as electron transport system (ETS). These flavoproteins contain very tightly bound, sometimes covalently, flavin adenine dinucleotide (FAD) or flavin mono nucleotide (FMN). The interaction between flavin nucleotide and amino acids of flavoprotein is essential for their functionality. Thus identification of FAD interacting residues in a FBP is an important step for understanding their function and mechanism.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: