Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Inner lumen proteins stabilize doublet microtubules in cilia and flagella.

  • Mikito Owa‎ et al.
  • Nature communications‎
  • 2019‎

Motile cilia are microtubule-based organelles that play important roles in most eukaryotes. Although axonemal microtubules are sufficiently stable to withstand their beating motion, it remains unknown how they are stabilized while serving as tracks for axonemal dyneins. To address this question, we have identified two uncharacterized proteins, FAP45 and FAP52, as microtubule inner proteins (MIPs) in Chlamydomonas. These proteins are conserved among eukaryotes with motile cilia. Using cryo-electron tomography (cryo-ET) and high-speed atomic force microscopy (HS-AFM), we show that lack of these proteins leads to a loss of inner protrusions in B-tubules and less stable microtubules. These protrusions are located near the inner junctions of doublet microtubules and lack of both FAP52 and a known inner junction protein FAP20 results in detachment of the B-tubule from the A-tubule, as well as flagellar shortening. These results demonstrate that FAP45 and FAP52 bind to the inside of microtubules and stabilize ciliary axonemes.


FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas.

  • Haru-aki Yanagisawa‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

The axoneme-the conserved core of eukaryotic cilia and flagella-contains highly specialized doublet microtubules (DMTs). A long-standing question is what protein(s) compose the junctions between two tubules in DMT. Here we identify a highly conserved flagellar-associated protein (FAP), FAP20, as an inner junction (IJ) component. The flagella of Chlamydomonas FAP20 mutants have normal length but beat with an abnormal symmetrical three-dimensional pattern. In addition, the mutant axonemes are liable to disintegrate during beating, implying that interdoublet connections may be weakened. Conventional electron microscopy shows that the mutant axonemes lack the IJ, and cryo-electron tomography combined with a structural labeling method reveals that the labeled FAP20 localizes at the IJ. The mutant axonemes also lack doublet-specific beak structures, which are localized in the proximal portion of the axoneme and may be involved in planar asymmetric flagellar bending. FAP20 itself, however, may not be a beak component, because uniform localization of FAP20 along the entire length of all nine DMTs is inconsistent with the beak's localization. FAP20 is the first confirmed component of the IJ. Our data also suggest that the IJ is important for both stabilizing the axoneme and scaffolding intra-B-tubular substructures required for a planar asymmetrical waveform.


Structure and function of outer dynein arm intermediate and light chain complex.

  • Toshiyuki Oda‎ et al.
  • Molecular biology of the cell‎
  • 2016‎

The outer dynein arm (ODA) is a molecular complex that drives the beating motion of cilia/flagella. Chlamydomonas ODA is composed of three heavy chains (HCs), two ICs, and 11 light chains (LCs). Although the three-dimensional (3D) structure of the whole ODA complex has been investigated, the 3D configurations of the ICs and LCs are largely unknown. Here we identified the 3D positions of the two ICs and three LCs using cryo-electron tomography and structural labeling. We found that these ICs and LCs were all localized at the root of the outer-inner dynein (OID) linker, designated the ODA-Beak complex. Of interest, the coiled-coil domain of IC2 extended from the ODA-Beak to the outer surface of ODA. Furthermore, we investigated the molecular mechanisms of how the OID linker transmits signals to the ODA-Beak, by manipulating the interaction within the OID linker using a chemically induced dimerization system. We showed that the cross-linking of the OID linker strongly suppresses flagellar motility in vivo. These results suggest that the ICs and LCs of the ODA form the ODA-Beak, which may be involved in mechanosignaling from the OID linker to the HCs.


Mechanosignaling between central apparatus and radial spokes controls axonemal dynein activity.

  • Toshiyuki Oda‎ et al.
  • The Journal of cell biology‎
  • 2014‎

Cilia/flagella are conserved organelles that generate fluid flow in eukaryotes. The bending motion of flagella requires concerted activity of dynein motors. Although it has been reported that the central pair apparatus (CP) and radial spokes (RSs) are important for flagellar motility, the molecular mechanism underlying CP- and RS-mediated dynein regulation has not been identified. In this paper, we identified nonspecific intermolecular collision between CP and RS as one of the regulatory mechanisms for flagellar motility. By combining cryoelectron tomography and motility analyses of Chlamydomonas reinhardtii flagella, we show that binding of streptavidin to RS heads paralyzed flagella. Moreover, the motility defect in a CP projection mutant could be rescued by the addition of exogenous protein tags on RS heads. Genetic experiments demonstrated that outer dynein arms are the major downstream effectors of CP- and RS-mediated regulation of flagellar motility. These results suggest that mechanosignaling between CP and RS regulates dynein activity in eukaryotic flagella.


Identification of the outer-inner dynein linker as a hub controller for axonemal dynein activities.

  • Toshiyuki Oda‎ et al.
  • Current biology : CB‎
  • 2013‎

In flagella, the outer dynein arm (ODA) and inner dynein arm (IDA) play distinct roles in generating beating motion. However, functional communications between the two dyneins have not been investigated.


Calaxin is required for cilia-driven determination of vertebrate laterality.

  • Keita Sasaki‎ et al.
  • Communications biology‎
  • 2019‎

Calaxin is a Ca2+-binding dynein-associated protein that regulates flagellar and ciliary movement. In ascidians, calaxin plays essential roles in chemotaxis of sperm. However, nothing has been known for the function of calaxin in vertebrates. Here we show that the mice with a null mutation in Efcab1, which encodes calaxin, display typical phenotypes of primary ciliary dyskinesia, including hydrocephalus, situs inversus, and abnormal motility of trachea cilia and sperm flagella. Strikingly, both males and females are viable and fertile, indicating that calaxin is not essential for fertilization in mice. The 9 + 2 axonemal structures of epithelial multicilia and sperm flagella are normal, but the formation of 9 + 0 nodal cilia is significantly disrupted. Knockout of calaxin in zebrafish also causes situs inversus due to the irregular ciliary beating of Kupffer's vesicle cilia, although the 9 + 2 axonemal structure appears to remain normal.


Detailed structural and biochemical characterization of the nexin-dynein regulatory complex.

  • Toshiyuki Oda‎ et al.
  • Molecular biology of the cell‎
  • 2015‎

The nexin-dynein regulatory complex (N-DRC) forms a cross-bridge between the outer doublet microtubules of the axoneme and regulates dynein motor activity in cilia/flagella. Although the molecular composition and the three-dimensional structure of N-DRC have been studied using mutant strains lacking N-DRC subunits, more accurate approaches are necessary to characterize the structure and function of N-DRC. In this study, we precisely localized DRC1, DRC2, and DRC4 using cryo-electron tomography and structural labeling. All three N-DRC subunits had elongated conformations and spanned the length of N-DRC. Furthermore, we purified N-DRC and characterized its microtubule-binding properties. Purified N-DRC bound to the microtubule and partially inhibited microtubule sliding driven by the outer dynein arms (ODAs). Of interest, microtubule sliding was observed even in the presence of fourfold molar excess of N-DRC relative to ODA. These results provide insights into the role of N-DRC in generating the beating motions of cilia/flagella.


Systematic studies of all PIH proteins in zebrafish reveal their distinct roles in axonemal dynein assembly.

  • Hiroshi Yamaguchi‎ et al.
  • eLife‎
  • 2018‎

Construction of motile cilia/flagella requires cytoplasmic preassembly of axonemal dyneins before transport into cilia. Axonemal dyneins have various subtypes, but the roles of each dynein subtype and their assembly processes remain elusive in vertebrates. The PIH protein family, consisting of four members, has been implicated in the assembly of different dynein subtypes, although evidence for this idea is sparse. Here, we established zebrafish mutants of all four PIH-protein genes: pih1d1, pih1d2, ktu, and twister, and analyzed the structures of axonemal dyneins in mutant spermatozoa by cryo-electron tomography. Mutations caused the loss of specific dynein subtypes, which was correlated with abnormal sperm motility. We also found organ-specific compositions of dynein subtypes, which could explain the severe motility defects of mutant Kupffer's vesicle cilia. Our data demonstrate that all vertebrate PIH proteins are differently required for cilia/flagella motions and the assembly of axonemal dyneins, assigning specific dynein subtypes to each PIH protein.


The association of ODF4 with AK1 and AK2 in mice is essential for fertility through its contribution to flagellar shape.

  • Chizuru Ito‎ et al.
  • Scientific reports‎
  • 2023‎

Normal sperm flagellar shape and movement are essential for fertilization. The integral protein outer dense fiber 4 (ODF4) localizes to ODFs, but its function remains unclear. Adenylate kinase (AK) is a phosphotransferase that catalyzes the interconversion and controls the concentration equilibrium of adenine nucleotides. AK shuttles ATP to energy-consuming sites. Here, we report on the relationship of flagellar shape and movement with ODF4, AK1 and AK2 by using Odf4-deletion (Odf4-/-) mice. Soluble ODF4 is coimmunoprecipitated with AK1 and AK2 in Odf4+/+ spermatozoa. ODF4, AK1 and AK2 localize to whole flagella (plasmalemma, mitochondria, ODFs, and residual cytoplasmic droplets (CDs)), principal pieces, and midpieces, respectively. Odf4-/- sperm flagella lose ODF4 and reduce AK1 and AK2 but produce ATP. The flagellum is bent (hairpin flagellum) with a large CD in the midpiece. There is no motility in the midpiece, but the principal piece is motile. Odf4-/- spermatozoa progress backward and fail to ascend in the uterus. Thus, Odf4-/- males are infertile owing to abnormal flagellar shape and movement caused mainly by the loss of ODF4 with AK1 and AK2. This study is supported by the rescue experiment; the abnormalities and male infertility caused by Odf4 deletion were reversed by Odf4 restoration.


Odf2 haploinsufficiency causes a new type of decapitated and decaudated spermatozoa, Odf2-DDS, in mice.

  • Chizuru Ito‎ et al.
  • Scientific reports‎
  • 2019‎

Outer dense fibre 2 (Odf2 or ODF2) is a cytoskeletal protein required for flagella (tail)-beating and stability to transport sperm cells from testes to the eggs. There are infertile males, including human patients, who have a high percentage of decapitated and decaudated spermatozoa (DDS), whose semen contains abnormal spermatozoa with tailless heads and headless tails due to head-neck separation. DDS is untreatable in reproductive medicine. We report for the first time a new type of Odf2-DDS in heterozygous mutant Odf2+/- mice. Odf2+/- males were infertile due to haploinsufficiency caused by heterozygous deletion of the Odf2 gene, encoding the Odf2 proteins. Odf2 haploinsufficiency induced sperm neck-midpiece separation, a new type of head-tail separation, leading to the generation of headneck sperm cells or headnecks composed of heads with necks and neckless tails composed of only the main parts of tails. The headnecks were immotile but alive and capable of producing offspring by intracytoplasmic headneck sperm injection (ICSI). The neckless tails were motile and could induce capacitation but had no significant forward motility. Further studies are necessary to show that ICSI in humans, using headneck sperm cells, is viable and could be an alternative for infertile patients suffering from Odf2-DDS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: