2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Highly effective fibrin biopolymer scaffold for stem cells upgrading bone regeneration.

  • Camila Fernanda Zorzella Creste‎ et al.
  • Materials (Basel, Switzerland)‎
  • 2020‎

Fibrin scaffold fits as a provisional platform promoting cell migration and proliferation, angiogenesis, connective tissue formation and growth factors stimulation. We evaluated a unique heterologous fibrin biopolymer as scaffold to mesenchymal stem cells (MSCs) to treat a critical-size bone defect. Femurs of 27 rats were treated with fibrin biopolymer (FBP); FBP + MSCs; and FBP + MSC differentiated in bone lineage (MSC-D). Bone repair was evaluated 03, 21 and 42 days later by radiographic, histological and scanning electron microscopy (SEM) imaging. The FBP + MSC-D association was the most effective treatment, since newly formed Bone was more abundant and early matured in just 21 days. We concluded that FBP is an excellent scaffold for MSCs and also use of differentiated cells should be encouraged in regenerative therapy researches. The FBP ability to maintain viable MSCs at Bone defect site has modified inflammatory environment and accelerating their regeneration.


Fibrin biopolymer sealant and aquatic exercise association for calcaneal tendon repair.

  • Silvia Maria Cardoso Magalhães Hidd‎ et al.
  • Acta cirurgica brasileira‎
  • 2021‎

The aim of this work was to analyze the effect of fibrin biopolymer sealant (FS) associated or not to aquatic exercise (AE) on the calcaneal tendon repair.


A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells.

  • Vinícius P O Gasparotto‎ et al.
  • Stem cell research & therapy‎
  • 2014‎

The optimization of an organic scaffold for specific types of applications and cells is vital to successful tissue engineering. In this study, we investigated the effects of a new fibrin sealant derived from snake venom as a scaffold for mesenchymal stem cells, to demonstrate the ability of cells to affect and detect the biological microenvironment.


Treatment of Chronic Venous Ulcers With Heterologous Fibrin Sealant: A Phase I/II Clinical Trial.

  • Luciana P F Abbade‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Heterologous fibrin sealant (HFS) consists of a fibrinogen-rich cryoprecipitate extracted from Bubalus bubalis buffalo blood and a thrombin-like enzyme purified from Crotalus durissus terrificus snake venom. This study evaluated the safety and immunogenicity of HFS, estimated the best dose, and assessed its preliminary efficacy in the treatment of chronic venous ulcers (CVU).


Unique heterologous fibrin biopolymer with hemostatic, adhesive, sealant, scaffold and drug delivery properties: a systematic review.

  • Daniela Vieira Buchaim‎ et al.
  • The journal of venomous animals and toxins including tropical diseases‎
  • 2019‎

Fibrin biopolymers, previously referred as "fibrin glue" or "fibrin sealants", are natural biomaterials with diverse applications on health. They have hemostatic, adhesive, sealant, scaffold and drug delivery properties and have become widely used in medical and dental procedures. Historically, these biomaterials are produced from human fibrinogen and human or animal thrombin, and the possibility of transmission of infectious diseases by human blood is not ruled out. In the 1990s, to overcome this problem, a new heterologous biomaterial composed of a thrombin-like enzyme purified from Crotalus durissus terrificus venom and a cryoprecipitate rich in fibrinogen extracted from buffaloes Bubalus bubalis blood has been proposed. Therefore, a systematic review of studies on exclusively heterologous fibrin sealants published between 1989 and 2018 was carried out using the following databases: PubMed, SciELO and Google Scholar. The keyword used was "heterologous fibrin sealant". The search resulted in 35 scientific papers in PubMed, four in SciELO and 674 in Google Scholar. After applying the inclusion/exclusion criteria and complete reading of the articles, 30 studies were selected, which formed the basis of this systematic review. It has been observed that the only completely heterologous sealant is the one produced by CEVAP/UNESP. This heterologous biopolymer is proven effective by several studies published in refereed scientific journals. In addition, clinical trials phase I/II for the treatment of chronic venous ulcers authorized by the Brazilian Health Regulatory Agency (ANVISA) were completed. Preliminary results have indicated a safe and promising effective product. Phase III clinical trials will be proposed and required to validate these preliminary findings.


Photobiomodulation Therapy Improves Repair of Bone Defects Filled by Inorganic Bone Matrix and Fibrin Heterologous Biopolymer.

  • Maria Fernanda Rossi Vigliar‎ et al.
  • Bioengineering (Basel, Switzerland)‎
  • 2024‎

Biomaterials are used extensively in graft procedures to correct bone defects, interacting with the body without causing adverse reactions. The aim of this pre-clinical study was to analyze the effects of photobiomodulation therapy (PBM) with the use of a low-level laser in the repair process of bone defects filled with inorganic matrix (IM) associated with heterologous fibrin biopolymer (FB). A circular osteotomy of 4 mm in the left tibia was performed in 30 Wistar male adult rats who were randomly divided into three groups: G1 = IM + PBM, G2 = IM + FB and G3 = IM + FB + PBM. PBM was applied at the time of the experimental surgery and three times a week, on alternate days, until euthanasia, with 830 nm wavelength, in two points of the operated site. Five animals from each group were euthanized 14 and 42 days after surgery. In the histomorphometric analysis, the percentage of neoformed bone tissue in G3 (28.4% ± 2.3%) was higher in relation to G1 (24.1% ± 2.91%) and G2 (22.2% ± 3.11%) at 14 days and at 42 days, the percentage in G3 (35.1% ± 2.55%) was also higher in relation to G1 (30.1% ± 2.9%) and G2 (31.8% ± 3.12%). In the analysis of the birefringence of collagen fibers, G3 showed a predominance of birefringence between greenish-yellow in the neoformed bone tissue after 42 days, differing from the other groups with a greater presence of red-orange fibers. Immunohistochemically, in all experimental groups, it was possible to observe immunostaining for osteocalcin (OCN) near the bone surface of the margins of the surgical defect and tartrate-resistant acid phosphatase (TRAP) bordering the newly formed bone tissue. Therefore, laser photobiomodulation therapy contributed to improving the bone repair process in tibial defects filled with bovine biomaterial associated with fibrin biopolymer derived from snake venom.


Morphofunctional Improvement of the Facial Nerve and Muscles with Repair Using Heterologous Fibrin Biopolymer and Photobiomodulation.

  • Cleuber Rodrigo de Souza Bueno‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

Peripheral nerve injuries impair the patient's functional capacity, including those occurring in the facial nerve, which require effective medical treatment. Thus, we investigated the use of heterologous fibrin biopolymer (HFB) in the repair of the buccal branch of the facial nerve (BBFN) associated with photobiomodulation (PBM), using a low-level laser (LLLT), analyzing the effects on axons, muscles facials, and functional recovery. This experimental study used twenty-one rats randomly divided into three groups of seven animals, using the BBFN bilaterally (the left nerve was used for LLLT): Control group-normal and laser (CGn and CGl); Denervated group-normal and laser (DGn and DGl); Experimental Repair Group-normal and laser (ERGn and ERGl). The photobiomodulation protocol began in the immediate postoperative period and continued for 5 weeks with a weekly application. After 6 weeks of the experiment, the BBFN and the perioral muscles were collected. A significant difference (p < 0.05) was observed in nerve fiber diameter (7.10 ± 0.25 µm and 8.00 ± 0.36 µm, respectively) and axon diameter (3.31 ± 0.19 µm and 4.07 ± 0.27 µm, respectively) between ERGn and ERGl. In the area of muscle fibers, ERGl was similar to GC. In the functional analysis, the ERGn and the ERGI (4.38 ± 0.10) and the ERGI (4.56 ± 0.11) showed parameters of normality. We show that HFB and PBM had positive effects on the morphological and functional stimulation of the buccal branch of the facial nerve, being an alternative and favorable for the regeneration of severe injuries.


Photobiomodulation Therapy Associated with Heterologous Fibrin Biopolymer and Bovine Bone Matrix Helps to Reconstruct Long Bones.

  • Marcelie Priscila de Oliveira Rosso‎ et al.
  • Biomolecules‎
  • 2020‎

Bone defects cause aesthetic and functional changes that affect the social, economic and especially the emotional life of human beings. This complication stimulates the scientific community to investigate strategies aimed at improving bone reconstruction processes using complementary therapies. Photobiomodulation therapy (PBMT) and the use of new biomaterials, including heterologous fibrin biopolymer (HFB), are included in this challenge. The objective of the present study was to evaluate the influence of photobiomodulation therapy on bone tibial reconstruction of rats with biomaterial consisting of lyophilized bovine bone matrix (BM) associated or not with heterologous fibrin biopolymer. Thirty male rats were randomly separated into three groups of 10 animals. In all animals, after the anesthetic procedure, a noncritical tibial defect of 2 mm was performed. The groups received the following treatments: Group 1: BM + PBMT, Group 2: BM + HFB and Group 3: BM + HFB + PBMT. The animals from Groups 1 and 3 were submitted to PBMT in the immediate postoperative period and every 48 h until the day of euthanasia that occurred at 14 and 42 days. Analyses by computed microtomography (µCT) and histomorphometry showed statistical difference in the percentage of bone formation between Groups 3 (BM + HB + PBMT) and 2 (BM + HFB) (26.4% ± 1.03% and 20.0% ± 1.87%, respectively) at 14 days and at 42 days (38.2% ± 1.59% and 31.6% ± 1.33%, respectively), and at 42 days there was presence of bone with mature characteristics and organized connective tissue. The µCT demonstrated BM particles filling the defect and the deposition of new bone in the superficial region, especially in the ruptured cortical. It was concluded that the association of PBMT with HFB and BM has the potential to assist in the process of reconstructing bone defects in the tibia of rats.


BjSP, a novel serine protease from Bothrops jararaca snake venom that degrades fibrinogen without forming fibrin clots.

  • Sante E I Carone‎ et al.
  • Toxicology and applied pharmacology‎
  • 2018‎

Snake venom serine proteases (SVSPs) are commonly described as capable of affecting hemostasis by interacting with several coagulation system components. In this study, we describe the isolation and characterization of BjSP from Bothrops jararaca snake venom, a serine protease with distinctive properties. This enzyme was isolated by three consecutive chromatographic steps and showed acidic character (pI 4.4), molecular mass of 28 kDa and N-carbohydrate content around 10%. Its partial amino acid sequence presented 100% identity to a serine protease cDNA clone previously identified from B. jararaca venom gland, but not yet isolated or characterized. BjSP was significantly inhibited by specific serine protease inhibitors and showed high stability at different pH values and temperatures. The enzyme displayed no effects on washed platelets, but was able to degrade fibrin clots in vitro and also the Aα and Bβ chains of fibrinogen differently from thrombin, forming additional fibrinopeptides derived from the Bβ chain, which should be related to its inability to coagulate fibrinogen solutions or platelet-poor plasma. In the mapping of catalytic subsites, the protease showed high hydrolytic specificity for tyrosine, especially in subsite S1. Additionally, its amidolytic activity on different chromogenic substrates suggests possible effects on other factors of the coagulation cascade. In conclusion, BjSP is a serine protease that acts nonspecifically on fibrinogen, generating different Bβ fibrinopeptides and thus not forming fibrin clots. Its distinguished properties in comparison to most SVSPs stimulate further studies in an attempt to validate its potential as a defibrinogenating agent.


Neuroprotection and immunomodulation by dimethyl fumarate and a heterologous fibrin biopolymer after ventral root avulsion and reimplantation.

  • Paula R G Kempe‎ et al.
  • The journal of venomous animals and toxins including tropical diseases‎
  • 2020‎

Ventral root avulsion (VRA) is an experimental approach in which there is an abrupt separation of the motor roots from the surface of the spinal cord. As a result, most of the axotomized motoneurons degenerate by the second week after injury, and the significant loss of synapses and increased glial reaction triggers a chronic inflammatory state. Pharmacological treatment associated with root reimplantation is thought to overcome the degenerative effects of VRA. Therefore, treatment with dimethyl fumarate (DMF), a drug with neuroprotective and immunomodulatory effects, in combination with a heterologous fibrin sealant/biopolymer (FS), a biological glue, may improve the regenerative response.


Tissue Bioengineering with Fibrin Scaffolds and Deproteinized Bone Matrix Associated or Not with the Transoperative Laser Photobiomodulation Protocol.

  • Karina Torres Pomini‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Extending the range of use of the heterologous fibrin biopolymer, this pre-clinical study showed a new proportionality of its components directed to the formation of scaffold with a lower density of the resulting mesh to facilitate the infiltration of bone cells, and combined with therapy by laser photobiomodulation, in order to accelerate the repair process and decrease the morphofunctional recovery time. Thus, a transoperative protocol of laser photobiomodulation (L) was evaluated in critical bone defects filled with deproteinized bovine bone particles (P) associated with heterologous fibrin biopolymer (HF). The groups were: BCL (blood clot + laser); HF; HFL; PHF (P+HF); PHFL (P+HF+L). Microtomographically, bone volume (BV) at 14 days, was higher in the PHF and PHFL groups (10.45 ± 3.31 mm3 and 9.94 ± 1.51 mm3), significantly increasing in the BCL, HFL and PHFL groups. Histologically, in all experimental groups, the defects were not reestablished either in the external cortical bone or in the epidural, occurring only in partial bone repair. At 42 days, the bone area (BA) increased in all groups, being significantly higher in the laser-treated groups. The quantification of bone collagen fibers showed that the percentage of collagen fibers in the bone tissue was similar between the groups for each experimental period, but significantly higher at 42 days (35.71 ± 6.89%) compared to 14 days (18.94 ± 6.86%). It can be concluded that the results of the present study denote potential effects of laser radiation capable of inducing functional bone regeneration, through the synergistic combination of biomaterials and the new ratio of heterologous fibrin biopolymer components (1:1:1) was able to make the resulting fibrin mesh less dense and susceptible to cellular permeability. Thus, the best fibrinogen concentration should be evaluated to find the ideal heterologous fibrin scaffold.


A unique heterologous fibrin sealant (HFS) as a candidate biological scaffold for mesenchymal stem cells in osteoporotic rats.

  • Patrícia Rodrigues Orsi‎ et al.
  • Stem cell research & therapy‎
  • 2017‎

The injection of mesenchymal stem cells (MSCs) directly into the bone of osteoporotic (OP) patients for rapid recovery has been studied worldwide. Scaffolds associated with MSCs are used to maintain and avoid cell loss after application. A unique heterologous fibrin sealant (HFS) derived from snake venom was evaluated for the cytotoxicity of its main components and as a three-dimensional biological scaffold for MSCs to repair a critical femur defect in osteoporotic rats.


Photobiomodulation Therapy on the Guided Bone Regeneration Process in Defects Filled by Biphasic Calcium Phosphate Associated with Fibrin Biopolymer.

  • Bruna Botteon Della Coletta‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

The aim is to evaluate the effects of photobiomodulation therapy (PBMT) on the guided bone regeneration process (GBR) in defects in the calvaria of rats filled with biphasic calcium phosphate associated with fibrin biopolymer. Thirty male Wistar rats were randomly separated: BMG (n = 10), defects filled with biomaterial and covered by membrane; BFMG (n = 10), biomaterial and fibrin biopolymer covered by membrane; and BFMLG (n = 10), biomaterial and fibrin biopolymer covered by membrane and biostimulated with PBMT. The animals were euthanized at 14 and 42 days postoperatively. Microtomographically, in 42 days, there was more evident bone growth in the BFMLG, limited to the margins of the defect with permanence of the particles. Histomorphologically, an inflammatory infiltrate was observed, which regressed with the formation of mineralized bone tissue. In the quantification of bone tissue, all groups had a progressive increase in new bone tissue with a significant difference in which the BFMLG showed greater bone formation in both periods (10.12 ± 0.67 and 13.85 ± 0.54), followed by BFMG (7.35 ± 0.66 and 9.41 ± 0.84) and BMG (4.51 ± 0.44 and 7.11 ± 0.44). Picrosirius-red staining showed greater birefringence of collagen fibers in yellow-green color in the BFMLG, showing more advanced bone maturation. PBMT showed positive effects capable of improving and accelerating the guided bone regeneration process when associated with biphasic calcium phosphate and fibrin biopolymer.


Combination of heterologous fibrin sealant and bioengineered human embryonic stem cells to improve regeneration following autogenous sciatic nerve grafting repair.

  • Roghayeh Mozafari‎ et al.
  • The journal of venomous animals and toxins including tropical diseases‎
  • 2018‎

Peripheral nerve injury is a worldwide clinical problem, and the preferred surgical method for treating it is the end-to-end neurorrhaphy. When it is not possible due to a large nerve gap, autologous nerve grafting is used. However, these surgical techniques result in nerve regeneration at highly variable degrees. It is thus very important to seek complementary techniques to improve motor and sensory recovery. One promising approach could be cell therapy. Transplantation therapy with human embryonic stem cells (hESCs) is appealing because these cells are pluripotent and can differentiate into specialized cell types and have self-renewal ability. Therefore, the main objective of this study was to find conditions under which functional recovery is improved after sciatic nerve neurorrhaphy. We assumed that hESC, either alone or in combination with heterologous fibrin sealant scaffold, could be used to support regeneration in a mouse model of sciatic nerve injury and repair via autografting with end-to-end neurorrhaphy.


Effects of a Biocomplex Formed by Two Scaffold Biomaterials, Hydroxyapatite/Tricalcium Phosphate Ceramic and Fibrin Biopolymer, with Photobiomodulation, on Bone Repair.

  • Carlos Henrique Bertoni Reis‎ et al.
  • Polymers‎
  • 2022‎

There are several treatment methods available for bone repair, although the effectiveness becomes limited in cases of large defects. The objective of this pre-clinical protocol was to evaluate the grafting of hydroxyapatite/tricalcium phosphate (BCP) ceramic biomaterial (B; QualyBone BCP®, QualyLive, Amadora, Portugal) together with the heterologous fibrin biopolymer (FB; CEVAP/UNESP Botucatu, Brazil) and with photobiomodulation (PBM; Laserpulse®, Ibramed, Amparo, Brazil) in the repair process of bone defects. Fifty-six rats were randomly divided into four groups of seven animals each: the biomaterial group (G1/B), the biomaterial plus FB group (G2/BFB); the biomaterial plus PBM group (G3/B + PBM), and the biomaterial plus FB plus PBM group (G4/BFB + PBM). After anesthesia, a critical defect was performed in the center of the rats' parietal bones, then filled and treated according to their respective groups. The rats were euthanized at 14 and 42 postoperative days. Histomorphologically, at 42 days, the G4/BFB + PBM group showed a more advanced maturation transition, with more organized and mature bone areas forming concentric lamellae. A birefringence analysis of collagen fibers also showed a more advanced degree of maturation for the G4/BFB + PBM group. In the comparison between the groups, in the two experimental periods (14 and 42 days), in relation to the percentage of formation of new bone tissue, a significant difference was found between all groups (G1/B (5.42 ± 1.12; 21.49 ± 4.74), G2/BFB (5.00 ± 0.94; 21.77 ± 2.83), G3/B + PBM (12.65 ± 1.78; 29.29 ± 2.93), and G4/BFB + PBM (12.65 ± 2.32; 31.38 ± 2.89)). It was concluded that the use of PBM with low-level laser therapy (LLLT) positively interfered in the repair process of bone defects previously filled with the biocomplex formed by the heterologous fibrin biopolymer associated with the synthetic ceramic of hydroxyapatite and tricalcium phosphate.


A biocomplex to repair experimental critical size defects associated with photobiomodulation therapy.

  • Daniela Vieira Buchaim‎ et al.
  • The journal of venomous animals and toxins including tropical diseases‎
  • 2022‎

The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer.


Transgenic human embryonic stem cells overexpressing FGF2 stimulate neuroprotection following spinal cord ventral root avulsion.

  • Marta Rocha Araújo‎ et al.
  • Experimental neurology‎
  • 2017‎

Ventral root avulsion (VRA) triggers a strong glial reaction which contributes to neuronal loss, as well as to synaptic detachment. To overcome the degenerative effects of VRA, treatments with neurotrophic factors and stem cells have been proposed. Thus, we investigated neuroprotection elicited by human embryonic stem cells (hESC), modified to overexpress a human fibroblast growth factor 2 (FGF-2), on motoneurons subjected to VRA. Lewis rats were submitted to VRA (L4-L6) and hESC/FGF-2 were applied to the injury site using a fibrin scaffold. The spinal cords were processed to evaluate neuronal survival, synaptic stability, and glial reactivity two weeks post lesion. Then, qRT-PCR was used to assess gene expression of β2-microglobulin (β2m), TNFα, IL1β, IL6 and IL10 in the spinal cord in vivo and FGF2 mRNA levels in hESC in vitro. The results indicate that hESC overexpressing FGF2 significantly rescued avulsed motoneurons, preserving synaptic covering and reducing astroglial reactivity. The cells were also shown to express BDNF and GDNF at the site of injury. Additionally, engraftment of hESC led to a significant reduction in mRNA levels of TNFα at the spinal cord ventral horn, indicating their immunomodulatory properties. Overall, the present data suggest that hESC overexpressing FGF2 are neuroprotective and can shift gene expression towards an anti-inflammatory environment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: