Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Fetal growth restriction and the programming of heart growth and cardiac insulin-like growth factor 2 expression in the lamb.

  • Kimberley C W Wang‎ et al.
  • The Journal of physiology‎
  • 2011‎

Reduced growth in fetal life together with accelerated growth in childhood, results in a ~50% greater risk of coronary heart disease in adult life. It is unclear why changes in patterns of body and heart growth in early life can lead to an increased risk of cardiovascular disease in adulthood. We aimed to investigate the role of the insulin-like growth factors in heart growth in the growth-restricted fetus and lamb. Hearts were collected from control and placentally restricted (PR) fetuses at 137-144 days gestation and from average (ABW) and low (LBW) birth weight lambs at 21 days of age. We quantified cardiac mRNA expression of IGF-1, IGF-2 and their receptors, IGF-1R and IGF-2R, using real-time RT-PCR and protein expression of IGF-1R and IGF-2R using Western blotting. Combined bisulphite restriction analysis was used to assess DNA methylation in the differentially methylated region (DMR) of the IGF-2/H19 locus and of the IGF-2R gene. In PR fetal sheep, IGF-2, IGF-1R and IGF-2R mRNA expression was increased in the heart compared to controls. LBW lambs had a greater left ventricle weight relative to body weight as well as increased IGF-2 and IGF-2R mRNA expression in the heart, when compared to ABW lambs. No changes in the percentage of methylation of the DMRs of IGF-2/H19 or IGF-2R were found between PR and LBW when compared to their respective controls. In conclusion, a programmed increased in cardiac gene expression of IGF-2 and IGF-2R may represent an adaptive response to reduced substrate supply (e.g. glucose and/or oxygen) in order to maintain heart growth and may be the underlying cause for increased ventricular hypertrophy and the associated susceptibility of cardiomyocytes to ischaemic damage later in life.


Maternal undernutrition in late gestation increases IGF2 signalling molecules and collagen deposition in the right ventricle of the fetal sheep heart.

  • Jack R T Darby‎ et al.
  • The Journal of physiology‎
  • 2018‎

This study investigates the impact of decreased fetal plasma glucose concentrations on the developing heart in late gestation, by subjecting pregnant ewes to a 50% global nutrient restriction. Late gestation undernutrition (LGUN) decreased fetal plasma glucose concentrations whilst maintaining a normoxemic blood gas status. LGUN increased the mRNA expression of IGF2 and IGF2R. Fetal plasma glucose concentrations, but not fetal blood pressure, were significantly correlated with IGF2 expression and the activation of CAMKII in the fetal right ventricle. LGUN increased interstitial collagen deposition and altered the protein abundance of phospho-PLB and phospho-troponin I, regulators of cardiac contractility and relaxation. This study shows that a decrease in fetal plasma glucose concentrations may play a role in the development of detrimental changes in the right ventricle in early life, highlighting CAMKII as a potential target for the development of intervention strategies.


Fetal cardiovascular response to acute hypoxia during maternal anesthesia.

  • Tamara J Varcoe‎ et al.
  • Physiological reports‎
  • 2020‎

Preclinical imaging studies of fetal hemodynamics require anesthesia to immobilize the animal. This may induce cardiovascular depression and confound measures under investigation. We compared the impact of four anesthetic regimes upon maternal and fetal blood gas and hemodynamics during baseline periods of normoxia, and in response to an acute hypoxic challenge in pregnant sheep. Merino ewes were surgically prepared with maternal and fetal vascular catheters and a fetal femoral artery flow probe at 105-109 days gestation. At 110-120 days gestation, ewes were anesthetized with either isoflurane (1.6%), isoflurane (0.8%) plus ketamine (3.6 mg·kg-1 ·h-1 ), ketamine (12.6 mg·kg-1 ·h-1 ) plus midazolam (0.78 mg·kg-1 ·h-1 ), propofol (30 mg·kg-1 ·h-1 ), or remained conscious. Following 60 min of baseline recording, nitrogen was administered directly into the maternal trachea to displace oxygen and induce maternal and thus fetal hypoxemia. During normoxia, maternal PaO2 was ~30 mmHg lower in anesthetized ewes compared to conscious controls, regardless of the type of anesthesia (p < .001). There was no effect of anesthesia on fetal mean arterial blood pressure (MAP; p > .05), but heart rate was 32 ± 8 bpm lower in fetuses from ewes administered isoflurane (p = .044). During maternal hypoxia, fetal MAP increased, and peripheral blood flow decreased in all fetuses except those administered propofol (p < .05). Unexpectedly, hypoxemia also induced fetal tachycardia regardless of the anesthetic regime (p < .05). These results indicate that despite maternal anesthesia, the fetus can mount a cardiovascular response to acute hypoxia by increasing blood pressure and reducing peripheral blood flow, although the heart rate response may differ from when no anesthesia is present.


Identification of Novel miRNAs Involved in Cardiac Repair Following Infarction in Fetal and Adolescent Sheep Hearts.

  • Mitchell C Lock‎ et al.
  • Frontiers in physiology‎
  • 2020‎

Animal models have been used to show that there are critical molecular mechanisms that can be activated to induce myocardial repair at specific times in development. For example, specific miRNAs are critical for regulating the response to myocardial infarction (MI) and improving the response to injury. Manipulating these miRNAs in small animal models provides beneficial effects post-MI; however it is not known if these miRNAs are regulated similarly in large mammals. Studying a large animal where the timing of heart development in relation to birth is similar to humans may provide insights to better understand the capacity to repair a developing mammalian heart and its application to the adult heart.


Differential Response to Injury in Fetal and Adolescent Sheep Hearts in the Immediate Post-myocardial Infarction Period.

  • Mitchell C Lock‎ et al.
  • Frontiers in physiology‎
  • 2019‎

Aim: Characterizing the response to myocardial infarction (MI) in the regenerative sheep fetus heart compared to the post-natal non-regenerative adolescent heart may reveal key morphological and molecular differences that equate to the response to MI in humans. We hypothesized that the immediate response to injury in (a) infarct compared with sham, and (b) infarct, border, and remote tissue, in the fetal sheep heart would be fundamentally different to the adolescent, allowing for repair after damage. Methods: We used a sheep model of MI induced by ligating the left anterior descending coronary artery. Surgery was performed on fetuses (105 days) and adolescent sheep (6 months). Sheep were randomly separated into MI (n = 5) or Sham (n = 5) surgery groups at both ages. We used magnetic resonance imaging (MRI), histological/immunohistochemical staining, and qRT-PCR to assess the morphological and molecular differences between the different age groups in response to infarction. Results: Magnetic resonance imaging showed no difference in fetuses for key functional parameters; however there was a significant decrease in left ventricular ejection fraction and cardiac output in the adolescent sheep heart at 3 days post-infarction. There was no significant difference in functional parameters between MRI sessions at Day 0 and Day 3 after surgery. Expression of genes involved in glucose transport and fatty acid metabolism, inflammatory cytokines as well as growth factors and cell cycle regulators remained largely unchanged in the infarcted compared to sham ventricular tissue in the fetus, but were significantly dysregulated in the adolescent sheep. Different cardiac tissue region-specific gene expression profiles were observed between the fetal and adolescent sheep. Conclusion: Fetuses demonstrated a resistance to cardiac damage not observed in the adolescent animals. The manipulation of specific gene expression profiles to a fetal-like state may provide a therapeutic strategy to treat patients following an infarction.


Molecular regulation of lung maturation in near-term fetal sheep by maternal daily vitamin C treatment in late gestation.

  • Erin V McGillick‎ et al.
  • Pediatric research‎
  • 2022‎

In the fetus, the appropriate balance of prooxidants and antioxidants is essential to negate the detrimental effects of oxidative stress on lung maturation. Antioxidants improve respiratory function in postnatal life and adulthood. However, the outcomes and biological mechanisms of antioxidant action in the fetal lung are unknown.


Achieving sustained extrauterine life: Challenges of an artificial placenta in fetal pigs as a model of the preterm human fetus.

  • Alex J Charest-Pekeski‎ et al.
  • Physiological reports‎
  • 2021‎

Artificial placenta (AP) technology aims to maintain fetal circulation, while promoting the physiologic development of organs. Recent reports of experiments performed in sheep indicate the intrauterine environment can be recreated through the cannulation of umbilical vessels, replacement of the placenta with a low-resistance membrane oxygenator, and incubation of the fetus in fluid. However, it remains to be seen whether animal fetuses similar in size to the extremely preterm human infant that have been proposed as a potential target for this technology can be supported in this way. Preterm Yucatan miniature piglets are similar in size to extremely preterm human infants and share similar umbilical cord anatomy, raising the possibility to serve as a good model to investigate the AP. To characterize fetal cardiovascular physiology, the carotid artery (n = 24) was cannulated in utero and umbilical vein (UV) and umbilical artery were sampled. Fetal UV flow was measured by MRI (n = 16). Piglets were delivered at 98 ± 4 days gestation (term = 115 days), cannulated, and supported on the AP (n = 12) for 684 ± 228 min (range 195-3077 min). UV flow was subphysiologic (p = .002), while heart rate was elevated on the AP compared with in utero controls (p = .0007). We observed an inverse relationship between heart rate and UV flow (r2  = .4527; p < .001) with progressive right ventricular enlargement that was associated with reduced contractility and ultimately hydrops and circulatory collapse. We attribute this to excessive afterload imposed by supraphysiologic circuit resistance and augmented sympathetic activity. We conclude that short-term support of the preterm piglet on the AP is feasible, although we have not been able to attain normal fetal physiology. In the future, we propose to investigate the feasibility of an AP circuit that incorporates a centrifugal pump in our miniature pig model.


Maternal chronic hypoxia increases expression of genes regulating lung liquid movement and surfactant maturation in male fetuses in late gestation.

  • Erin V McGillick‎ et al.
  • The Journal of physiology‎
  • 2017‎

Chronic fetal hypoxaemia is a common pregnancy complication associated with intrauterine growth restriction that may influence respiratory outcome at birth. We investigated the effect of maternal chronic hypoxia for a month in late gestation on signalling pathways regulating fetal lung maturation and the transition to air-breathing at birth using isobaric hypoxic chambers without alterations to maternal food intake. Maternal chronic hypoxia in late gestation increases fetal lung expression of genes regulating hypoxia signalling, lung liquid reabsorption and surfactant maturation, which may be an adaptive response in preparation for the successful transition to air-breathing at birth. In contrast to other models of chronic fetal hypoxaemia, late gestation onset fetal hypoxaemia promotes molecular regulation of fetal lung maturation. This suggests a differential effect of timing and duration of fetal chronic hypoxaemia on fetal lung maturation, which supports the heterogeneity observed in respiratory outcomes in newborns following exposure to chronic hypoxaemia in utero.


Chronic hypoxemia in late gestation decreases cardiomyocyte number but does not change expression of hypoxia-responsive genes.

  • Kimberley J Botting‎ et al.
  • Journal of the American Heart Association‎
  • 2014‎

Placental insufficiency is the leading cause of intrauterine growth restriction in the developed world and results in chronic hypoxemia in the fetus. Oxygen is essential for fetal heart development, but a hypoxemic environment in utero can permanently alter development of cardiomyocytes. The present study aimed to investigate the effect of placental restriction and chronic hypoxemia on total number of cardiomyocytes, cardiomyocyte apoptosis, total length of coronary capillaries, and expression of genes regulated by hypoxia.


Open or closed: Changes in ductus arteriosus flow patterns at birth using 4D flow MRI in newborn piglets.

  • Eric M Schrauben‎ et al.
  • Physiological reports‎
  • 2021‎

The ductus arteriosus (DA) functionally closes during the transition from fetal to postnatal life because of lung aeration and corresponding cardiovascular changes. The thorough and explicit measurement and visualization of the right and left heart output during this transition has not been previously accomplished. We combined 4D flow MRI (dynamic volumetric blood flow measurements) and T2 relaxometry (oxygen delivery quantification) in surgically instrumented newborn piglets to assess the DA. This was performed in Large White-Landrace-Duroc piglets (n = 34) spanning four age groups: term-9 days, term-3, term+1, and term+5. Subject's DA status was classified using 4D flow: closed DA, forward DA flow, reversed DA flow, and bidirectional DA flow. Over all states, vessel diameters and flows normalized to body weight increased with age (for example in the ascending aorta flow-term-9: 126.6 ± 45.4; term+5: 260.2 ± 80.0 ml/min per kg; p = 0.0005; ascending aorta diameter-term-9: 5.2 ± 0.8; term+5: 7.7 ± 0.4 mm; p = 0.0004). In subjects with reversed DA blood flow there was lower common carotid artery blood flow (forward: 37.5 ± 9.0; reversed: 20.0 ± 7.4 ml/min per kg; p = 0.032). Linear regression revealed that as net DA flow decreases, common carotid artery flow decreases (R2  = 0.32, p = 0.004), and left (R2  = 0.33, p = 0.003) and right (R2  = 0.34, p = 0.003) pulmonary artery flow increases. Bidirectional DA blood flow changed oxygen saturation as determined by MRI between the ascending and descending aorta (ascending aorta: 90.1% ± 8.4%; descending aorta: 75.6% ± 14.2%; p < 0.05). Expanded use of these techniques in preterm animal models will aid in providing new understandings of normal versus abnormal DA transition, as well as to test the effectiveness of related clinical interventions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: