2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Digital gene expression profiling analysis of duodenum transcriptomes in SD rats administered ferrous sulfate or ferrous glycine chelate by gavage.

  • Zhao Zhuo‎ et al.
  • Scientific reports‎
  • 2016‎

The absorption of different iron sources is a trending research topic. Many studies have revealed that organic iron exhibits better bioavailability than inorganic iron, but the concrete underlying mechanism is still unclear. In the present study, we examined the differences in bioavailability of ferrous sulfate and ferrous glycinate in the intestines of SD rats using Illumina sequencing technology. Digital gene expression analysis resulted in the generation of almost 128 million clean reads, with expression data for 17,089 unigenes. A total of 123 differentially expressed genes with a |log2(fold change)| >1 and q-value < 0.05 were identified between the FeSO4 and Fe-Gly groups. Gene Ontology functional analysis revealed that these genes were involved in oxidoreductase activity, iron ion binding, and heme binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis also showed relevant important pathways. In addition, the expression patterns of 9 randomly selected genes were further validated by qRT-PCR, which confirmed the digital gene expression results. Our study showed that the two iron sources might share the same absorption mechanism, and that differences in bioavailability between FeSO4 and Fe-Gly were not only in the absorption process but also during the transport and utilization process.


Iron acquisition system of Sphingobium sp. strain SYK-6, a degrader of lignin-derived aromatic compounds.

  • Masaya Fujita‎ et al.
  • Scientific reports‎
  • 2020‎

Iron, an essential element for all organisms, acts as a cofactor of enzymes in bacterial degradation of recalcitrant aromatic compounds. The bacterial family, Sphingomonadaceae comprises various degraders of recalcitrant aromatic compounds; however, little is known about their iron acquisition system. Here, we investigated the iron acquisition system in a model bacterium capable of degrading lignin-derived aromatics, Sphingobium sp. strain SYK-6. Analyses of SYK-6 mutants revealed that FiuA (SLG_34550), a TonB-dependent receptor (TBDR), was the major outer membrane iron transporter. Three other TBDRs encoded by SLG_04340, SLG_04380, and SLG_10860 also participated in iron uptake, and tonB2 (SLG_34540), one of the six tonB comprising the Ton complex which enables TBDR-mediated transport was critical for iron uptake. The ferrous iron transporter FeoB (SLG_36840) played an important role in iron uptake across the inner membrane. The promoter activities of most of the iron uptake genes were induced under iron-limited conditions, and their regulation is controlled by SLG_29410 encoding the ferric uptake regulator, Fur. Although feoB, among all the iron uptake genes identified is highly conserved in Sphingomonad strains, the outer membrane transporters seem to be diversified. Elucidation of the iron acquisition system promises better understanding of the bacterial degradation mechanisms of aromatic compounds.


Ionothermal synthesis of magnetic N-doped porous carbon to immobilize Pd nanoparticles as an efficient nanocatalyst for the reduction of nitroaromatic compounds.

  • Sahar Taheri‎ et al.
  • Scientific reports‎
  • 2023‎

Carbon materials play important roles as catalysts or catalyst supports for reduction reactions owing to their high porosity, large specific surface area, great electron conductivity, and excellent chemical stability. In this paper, a mesoporous N-doped carbon substrate (exhibited as N-C) has been synthesized by ionothermal carbonization of glucose in the presence of histidine. The N-C substrate was modified by Fe3O4 nanoparticles (N-C/Fe3O4), and then Pd nanoparticles were stabilized on the magnetic substrate to synthesize an eco-friendly Pd catalyst with high efficiency, magnetic, reusability, recoverability, and great stability. To characterize the Pd/Fe3O4-N-C nanocatalyst, different microscopic and spectroscopic methods such as FT-IR, XRD, SEM/EDX, and TEM were applied. Moreover, Pd/Fe3O4-N-C showed high catalytic activity in reducing nitroaromatic compounds in water at ambient temperatures when NaBH4 was used as a reducing agent. The provided nanocatalyst's great catalytic durability and power can be attributed to the synergetic interaction among well-dispersed Pd nanoparticles and N-doped carbonaceous support.


Desalination of Produced Water by Membrane Distillation: Effect of the Feed Components and of a Pre-treatment by Fenton Oxidation.

  • Francesco Ricceri‎ et al.
  • Scientific reports‎
  • 2019‎

The treatment of produced waters (by-products of oil and gas extraction) with the innovative process of membrane distillation is challenging, because these highly saline streams contain high concentrations of organic compounds and hydrocarbons that cause membrane wetting and impairment of performance. To design the most compact treatment scheme and with the aim of obtaining an easier management of produced water for reuse purposes, Fenton oxidation is here investigated as a feed pre-treatment that may produce an effluent easily handled by membrane distillation. In high-recovery membrane distillation tests, we systematically investigate the detrimental effects of individual contaminants in a synthetic produced water mimicking the composition of a real sample. The recovery rate depends strongly on the initial salinity, which eventually causes scaling and pore blocking. Surfactants are found to be mainly responsible for membrane wetting, but volatile and hydrophobic organics also spoil the quality of the product water. A Fenton oxidation pre-treatment is thus performed to degrade the target organics, with the aim of enhancing the effectiveness of the following membrane distillation and to improve the quality of the final product. The combined oxidation-membrane distillation scheme has both advantages and limitations, which need to be carefully evaluated and further investigated.


The development of a novel ferric phytate compound for iron fortification of bouillons (part I).

  • Swarnim Gupta‎ et al.
  • Scientific reports‎
  • 2020‎

In a series of two studies, we report the development (this study) and evaluation (part II) of a novel ferric phytate compound designed as a condiment iron fortificant. Condiments are used as iron fortification vehicles to reduce the prevalence  of iron deficiency. The challenge for iron fortificants in e.g. a bouillon matrix is to avoid undesired sensory effects and to ensure a reasonable cost. We added phytic acid to chelate iron, and hydrolysed protein to counteract the inhibiting effect of phytic acid on iron bioaccessibility. We characterised four novel ferric phytate compounds, destabilised by hydrolysed plant protein or amino acids. Colour stability of fortified bouillons with ferric phytate compounds was superior to bouillons fortified with ferrous sulfate. The iron-phytate-hydrolysed corn protein compound (Fe-PA-HCP) resulted in highest cellular ferritin induction in Caco-2 cells, in both vegetable (36.1 ± 13.40 ng/mg protein) and chicken (73.9 ± 19.93 ng/mg protein) bouillon matrices as observed in the human Caco-2/HepG2 cell model. Iron uptake (as estimated by ferritin production) from the Fe-PA-HCP compound was about 55% (chicken bouillon) and 66% (vegetable bouillon) of the iron uptake from ferrous sulfate. Based on this study, the Fe-PA-HCP compound was chosen for further evaluation (part II).


Identification of Guanosine 5'-diphosphate as Potential Iron Mobilizer: Preventing the Hepcidin-Ferroportin Interaction and Modulating the Interleukin-6/Stat-3 Pathway.

  • Stanzin Angmo‎ et al.
  • Scientific reports‎
  • 2017‎

Hepcidin, a peptide hormone, is a key regulator in mammalian iron homeostasis. Increased level of hepcidin due to inflammatory conditions stimulates the ferroportin (FPN) transporter internalization, impairing the iron absorption; clinically manifested as anemia of inflammation (AI). Inhibiting hepcidin-mediated FPN degradation is proposed as an important strategy to combat AI. A systematic approach involving in silico, in vitro, ex vivo and in vivo studies is employed to identify hepcidin-binding agents. The virtual screening of 68,752 natural compounds via molecular docking resulted into identification of guanosine 5'-diphosphate (GDP) as a promising hepcidin-binding agent. The molecular dynamics simulations helped to identify the important hepcidin residues involved in stabilization of hepcidin-GDP complex. The results gave a preliminary indication that GDP may possibly inhibit the hepcidin-FPN interactions. The in vitro studies revealed that GDP caused FPN stabilization (FPN-GFP cell lines) and increased the FPN-mediated cellular iron efflux (HepG2 and Caco-2 cells). Interestingly, the co-administration of GDP and ferrous sulphate (FeSO4) ameliorated the turpentine-induced AI in mice (indicated by increased haemoglobin level, serum iron, FPN expression and decreased ferritin level). These results suggest that GDP a promising natural small-molecule inhibitor that targets Hepcidin-FPN complex may be incorporated with iron supplement regimens to ameliorate AI.


Iron chelators target both proliferating and quiescent cancer cells.

  • Mårten Fryknäs‎ et al.
  • Scientific reports‎
  • 2016‎

Poorly vascularized areas of solid tumors contain quiescent cell populations that are resistant to cell cycle-active cancer drugs. The compound VLX600 was recently identified to target quiescent tumor cells and to inhibit mitochondrial respiration. We here performed gene expression analysis in order to characterize the cellular response to VLX600. The compound-specific signature of VLX600 revealed a striking similarity to signatures generated by compounds known to chelate iron. Validation experiments including addition of ferrous and ferric iron in excess, EXAFS measurements, and structure activity relationship analyses showed that VLX600 chelates iron and supported the hypothesis that the biological effects of this compound is due to iron chelation. Compounds that chelate iron possess anti-cancer activity, an effect largely attributed to inhibition of ribonucleotide reductase in proliferating cells. Here we show that iron chelators decrease mitochondrial energy production, an effect poorly tolerated by metabolically stressed tumor cells. These pleiotropic features make iron chelators an attractive option for the treatment of solid tumors containing heterogeneous populations of proliferating and quiescent cells.


New C8-substituted caffeine derivatives as promising antioxidants and cytoprotective agents in human erythrocytes.

  • Arleta Sierakowska‎ et al.
  • Scientific reports‎
  • 2023‎

New structurally diverse groups of C8-substituted caffeine derivatives were synthesized and evaluated for their chemical and biological properties. Mass spectrometry, FT-IR, and NMR characterizations of these derivatives were performed. The cytotoxic activity of the derivatives was estimated in vitro using human red blood cells (RBC) and in silico pharmacokinetic studies. The antioxidant capacity of the compounds was analyzed using a ferrous ion chelating activity assay. The ability of the derivatives to protect RBC from oxidative damage, including the oxidation of hemoglobin to methemoglobin, was assessed using a water-soluble 2,2'-azobis(2-methyl-propionamidine) dihydrochloride (AAPH) as a standard inducer of peroxyl radicals. The level of intracellular oxidative stress was assessed using the fluorescent redox probe 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA). The results indicate that all derivatives are biocompatible compounds with significant antioxidant and cytoprotective potential dependent on their chemical structure. In order to explain the antioxidant and cytoprotective activity of the derivatives, a mechanism of hydrogen atom transfer (HAT), radical adduct formation (RAF), or single electron transfer (SET), as well as the specific interactions of the derivatives with the lipid bilayer of RBC membrane, have been proposed. The results show that selected modifications of the caffeine molecule enhance its antioxidant properties, which expands our knowledge of the structure-activity relationship of caffeine-based cytoprotective compounds.


Iron from nanostructured ferric phosphate: absorption and biodistribution in mice and bioavailability in iron deficient anemic women.

  • Jeannine Baumgartner‎ et al.
  • Scientific reports‎
  • 2022‎

Food fortification with iron nanoparticles (NPs) could help prevent iron deficiency anemia, but the absorption pathway and biodistribution of iron-NPs and their bioavailability in humans is unclear. Dietary non-heme iron is physiologically absorbed via the divalent metal transporter-1 (DMT1) pathway. Using radio- iron isotope labelling in mice with a partial knockdown of intestine-specific DMT1, we assessed oral absorption and tissue biodistribution of nanostructured ferric phosphate (FePO4-NP; specific surface area [SSA] 98 m2g-1) compared to to ferrous sulfate (FeSO4), the reference compound. We show that absorption of iron from FePO4-NP appears to be largely DMT1 dependent and that its biodistribution after absorption is similar to that from FeSO4, without abnormal deposition of iron in the reticuloendothelial system. Furthermore, we demonstrate high bioavailability from iron NPs in iron deficient anemic women in a randomized, cross-over study using stable-isotope labelling: absorption and subsequent erythrocyte iron utilization from two 57Fe-labeled FePO4-NP with SSAs of 98 m2g-1 and 188 m2g-1 was 2.8-fold and 5.4-fold higher than from bulk FePO4 with an SSA of 25 m2g-1 (P < 0.001) when added to a rice and vegetable meal consumed by iron deficient anemic women. The FePO4-NP 188 m2g-1 achieved 72% relative bioavailability compared to FeSO4. These data suggest FePO4-NPs may be useful for nutritional applications.


Biology of archaea from a novel family Cuniculiplasmataceae (Thermoplasmata) ubiquitous in hyperacidic environments.

  • Olga V Golyshina‎ et al.
  • Scientific reports‎
  • 2016‎

The order Thermoplasmatales (Euryarchaeota) is represented by the most acidophilic organisms known so far that are poorly amenable to cultivation. Earlier culture-independent studies in Iron Mountain (California) pointed at an abundant archaeal group, dubbed 'G-plasma'. We examined the genomes and physiology of two cultured representatives of a Family Cuniculiplasmataceae, recently isolated from acidic (pH 1-1.5) sites in Spain and UK that are 16S rRNA gene sequence-identical with 'G-plasma'. Organisms had largest genomes among Thermoplasmatales (1.87-1.94 Mbp), that shared 98.7-98.8% average nucleotide identities between themselves and 'G-plasma' and exhibited a high genome conservation even within their genomic islands, despite their remote geographical localisations. Facultatively anaerobic heterotrophs, they possess an ancestral form of A-type terminal oxygen reductase from a distinct parental clade. The lack of complete pathways for biosynthesis of histidine, valine, leucine, isoleucine, lysine and proline pre-determines the reliance on external sources of amino acids and hence the lifestyle of these organisms as scavengers of proteinaceous compounds from surrounding microbial community members. In contrast to earlier metagenomics-based assumptions, isolates were S-layer-deficient, non-motile, non-methylotrophic and devoid of iron-oxidation despite the abundance of methylotrophy substrates and ferrous iron in situ, which underlines the essentiality of experimental validation of bioinformatic predictions.


Comparative antioxidant activity and phytochemical content of five extracts of Pleurotus ostreatus (oyster mushroom).

  • Magdalene Eno Effiong‎ et al.
  • Scientific reports‎
  • 2024‎

Reactive oxygen species reacts with numerous molecules in the body system causing oxidative damage, which requires antioxidants to ameliorate. Pleurotus ostreatus, a highly nutritious edible mushroom, has been reported to be rich in bioactive compounds. This study evaluated the comparative antioxidant activity and phytochemical contents of five extracts of P. ostreatus: aqueous (AE), chloroform (CE), ethanol (EE), methanol (ME) and n-hexane (HE). The phytochemical composition and antioxidant activity of the extracts were determined using standard in-vitro antioxidant assay methods. Results showed that the extracts contained alkaloids, tannins, saponins, flavonoids, terpenoids, phenolics, cardiac glycosides, carbohydrates, anthrocyanins, and betacyanins in varied amounts. CE had the highest flavonoid content (104.83 ± 29.46 mg/100 g); AE gave the highest phenol content of 24.14 ± 0.02 mg/100 g; tannin was highest in EE (25.12 ± 0.06 mg/100 g); HE had highest amounts of alkaloids (187.60 ± 0.28 mg/100 g) and saponins (0.16 ± 0.00 mg/100 g). Antioxidant analyses revealed that CE had the best hydroxyl radical activity of 250% at 100 µg/ml and ferric cyanide reducing power of 8495 µg/ml; ME gave the maximum DPPH activity (87.67%) and hydrogen peroxide scavenging activity (65.58%) at 500 µg/ml; EE had the highest nitric oxide radical inhibition of 65.81% at 500 µg/ml and ascorbate peroxidase activity of 1.60 (iU/l). AE had the best total antioxidant capacity (5.27 µg/ml GAE at 500 µg/ml) and ferrous iron chelating activity (99.23% at 100 µg/ml) while HE gave the highest guaiacol peroxidase activity of 0.20(iU/l). The comparative phytochemical and antioxidant characteristics (IC50) of the extracts followed the order: CE > AE > EE > ME > HE. Overall, chloroform was the best extraction solvent for P. ostreatus. The high content of phenolic compounds, flavonoids, and alkaloids in P. ostreatus makes it a rich source of antioxidants and potential candidate for the development of new therapies for a variety of oxidative stress-related disorders.


The effect of Alnus incana (L.) Moench extracts in ameliorating iron overload-induced hepatotoxicity in male albino rats.

  • Fatma Abo-Elghiet‎ et al.
  • Scientific reports‎
  • 2023‎

Iron overload causes multiorgan dysfunction and serious damage. Alnus incana from the family Betulaceae, widely distributed in North America, is used for treating diseases. In this study, we investigated the iron chelating, antioxidant, anti-inflammatory, and antiapoptotic activities of the total and butanol extract from Alnus incana in iron-overloaded rats and identified the bioactive components in both extracts using liquid chromatography-mass spectrometry. We induced iron overload in the rats via six intramuscular injections of 12.5 mg iron dextran/100 g body weight for 30 days. The rats were then administered 60 mg ferrous sulfate /kg body weight once daily using a gastric tube. The total and butanol extracts were given orally, and the reference drug (deferoxamine) was administered subcutaneously for another month. After two months, we evaluated the biochemical, histopathological, histochemical, and immunohistochemical parameters. Iron overload significantly increased the serum iron level, liver biomarker activities, hepatic iron content, malondialdehyde, tumor necrosis factor-alpha, and caspase-3 levels. It also substantially (P < 0.05) reduced serum albumin, total protein, and total bilirubin content, and hepatic reduced glutathione levels. It caused severe histopathological alterations compared to the control rats, which were markedly (P < 0.05) ameliorated after treatment. The total extract exhibited significantly higher anti-inflammatory and antiapoptotic activities but lower antioxidant and iron-chelating activities than the butanol extract. Several polyphenolic compounds, including flavonoids and phenolic acids, were detected by ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) analysis. Our findings suggest that both extracts might alleviate iron overload-induced hepatoxicity and other pathological conditions characterized by hepatic iron overload, including thalassemia and sickle-cell anemia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: