Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Heterogeneous stochastic bifurcations explain intrinsic oscillatory patterns in entorhinal cortical stellate cells.

  • Divyansh Mittal‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Stellate cells (SC) in the medial entorhinal cortex manifest intrinsic membrane potential oscillatory patterns. Although different theoretical frameworks have been proposed to explain these patterns, a robust unifying framework that jointly accounts for intrinsic heterogeneities and stochasticity is missing. Here, we first performed in vitro patch-clamp electrophysiological recordings from rat SCs and found pronounced cell-to-cell variability in their characteristic physiological properties, including peri-threshold oscillatory patterns. We demonstrate that noise introduced into two independent populations (endowed with deterministic or stochastic ion-channel gating kinetics) of heterogeneous biophysical models yielded activity patterns that were qualitatively similar to electrophysiological peri-threshold oscillatory activity in SCs. We developed spectrogram-based quantitative metrics for the identification of valid oscillations and confirmed that these metrics reliably captured the variable-amplitude and arhythmic oscillatory patterns observed in electrophysiological recordings. Using these quantitative metrics, we validated activity patterns from both heterogeneous populations of SC models, with each model assessed with multiple trials of different levels of noise at distinct membrane depolarizations. Our analyses unveiled the manifestation of stochastic resonance (detection of the highest number of valid oscillatory traces at an optimal level of noise) in both heterogeneous populations of SC models. Finally, we show that a generalized network motif comprised of a slow negative feedback loop amplified by a fast positive feedback loop manifested stochastic bifurcations and stochastic resonance in the emergence of oscillations. Together, through a unique convergence of the degeneracy and stochastic resonance frameworks, our unifying framework centered on heterogeneous stochastic bifurcations argues for state-dependent emergence of SC oscillations.


Computational analysis of the impact of chronic stress on intrinsic and synaptic excitability in the hippocampus.

  • Rishikesh Narayanan‎ et al.
  • Journal of neurophysiology‎
  • 2010‎

Dendritic atrophy and impaired long-term synaptic potentiation (LTP) are hallmarks of chronic stress-induced plasticity in the hippocampus. It has been hypothesized that these disparate structural and physiological correlates of stress lead to hippocampal dysfunction by reducing postsynaptic dendritic surface, thereby adversely affecting the availability of synaptic inputs and suppressing LTP. Here we examine the validity of this framework using biophysical models of hippocampal CA3 pyramidal neurons. To statistically match with the experimentally observed region specificity of stress-induced atrophy, we use an algorithm to systematically prune three-dimensional reconstructions of CA3 pyramidal neurons. Using this algorithm, we build a biophysically realistic computational model to analyze the effects of stress on intrinsic and synaptic excitability. We find that stress-induced atrophy of CA3 dendrites leads to an increase in input resistance, which depends exponentially on the percentage of neuronal atrophy. This increase translates directly into higher spiking frequencies in response to both somatic current injections and synaptic inputs at various locations along the dendritic arbor. Remarkably, we also find that the dendritic regions that manifest atrophy-induced synaptic hyperexcitability are governed by the region specificity of the underlying dendritic atrophy. Coupled with experimentally observed modulation of N-methyl-d-aspartate receptor currents, such hyperexcitability could tilt the balance of plasticity mechanisms in favor of synaptic potentiation over depression. Thus paradoxically, our results suggest that stress may impair hippocampal learning and memory, not by directly inhibiting LTP, but because of stress-induced facilitation of intrinsic and synaptic excitability and the consequent imbalance in bidirectional synaptic plasticity.


Resonating neurons stabilize heterogeneous grid-cell networks.

  • Divyansh Mittal‎ et al.
  • eLife‎
  • 2021‎

A central theme that governs the functional design of biological networks is their ability to sustain stable function despite widespread parametric variability. Here, we investigated the impact of distinct forms of biological heterogeneities on the stability of a two-dimensional continuous attractor network (CAN) implicated in grid-patterned activity generation. We show that increasing degrees of biological heterogeneities progressively disrupted the emergence of grid-patterned activity and resulted in progressively large perturbations in low-frequency neural activity. We postulated that targeted suppression of low-frequency perturbations could ameliorate heterogeneity-induced disruptions of grid-patterned activity. To test this, we introduced intrinsic resonance, a physiological mechanism to suppress low-frequency activity, either by adding an additional high-pass filter (phenomenological) or by incorporating a slow negative feedback loop (mechanistic) into our model neurons. Strikingly, CAN models with resonating neurons were resilient to the incorporation of heterogeneities and exhibited stable grid-patterned firing. We found CAN models with mechanistic resonators to be more effective in targeted suppression of low-frequency activity, with the slow kinetics of the negative feedback loop essential in stabilizing these networks. As low-frequency perturbations (1/f noise) are pervasive across biological systems, our analyses suggest a universal role for mechanisms that suppress low-frequency activity in stabilizing heterogeneous biological networks.


Degeneracy in the emergence of spike-triggered average of hippocampal pyramidal neurons.

  • Abha Jain‎ et al.
  • Scientific reports‎
  • 2020‎

Hippocampal pyramidal neurons are endowed with signature excitability characteristics, exhibit theta-frequency selectivity - manifesting as impedance resonance and as a band-pass structure in the spike-triggered average (STA) - and coincidence detection tuned for gamma-frequency inputs. Are there specific constraints on molecular-scale (ion channel) properties in the concomitant emergence of cellular-scale encoding (feature detection and selectivity) and excitability characteristics? Here, we employed a biophysically-constrained unbiased stochastic search strategy involving thousands of conductance-based models, spanning 11 active ion channels, to assess the concomitant emergence of 14 different electrophysiological measurements. Despite the strong biophysical and physiological constraints, we found models that were similar in terms of their spectral selectivity, operating mode along the integrator-coincidence detection continuum and intrinsic excitability characteristics. The parametric combinations that resulted in these functionally similar models were non-unique with weak pair-wise correlations. Employing virtual knockout of individual ion channels in these functionally similar models, we found a many-to-many relationship between channels and physiological characteristics to mediate this degeneracy, and predicted a dominant role for HCN and transient potassium channels in regulating hippocampal neuronal STA. Our analyses reveals the expression of degeneracy, that results from synergistic interactions among disparate channel components, in the concomitant emergence of neuronal excitability and encoding characteristics.


Degeneracy in the robust expression of spectral selectivity, subthreshold oscillations, and intrinsic excitability of entorhinal stellate cells.

  • Divyansh Mittal‎ et al.
  • Journal of neurophysiology‎
  • 2018‎

Biological heterogeneities are ubiquitous and play critical roles in the emergence of physiology at multiple scales. Although neurons in layer II (LII) of the medial entorhinal cortex (MEC) express heterogeneities in channel properties, the impact of such heterogeneities on the robustness of their cellular-scale physiology has not been assessed. Here, we performed a 55-parameter stochastic search spanning nine voltage- or calcium-activated channels to assess the impact of channel heterogeneities on the concomitant emergence of 10 in vitro electrophysiological characteristics of LII stellate cells (SCs). We generated 150,000 models and found a heterogeneous subpopulation of 449 valid models to robustly match all electrophysiological signatures. We employed this heterogeneous population to demonstrate the emergence of cellular-scale degeneracy in SCs, whereby disparate parametric combinations expressing weak pairwise correlations resulted in similar models. We then assessed the impact of virtually knocking out each channel from all valid models and demonstrate that the mapping between channels and measurements was many-to-many, a critical requirement for the expression of degeneracy. Finally, we quantitatively predict that the spike-triggered average of SCs should be endowed with theta-frequency spectral selectivity and coincidence detection capabilities in the fast gamma-band. We postulate this fast gamma-band coincidence detection as an instance of cellular-scale-efficient coding, whereby SC response characteristics match the dominant oscillatory signals in LII MEC. The heterogeneous population of valid SC models built here unveils the robust emergence of cellular-scale physiology despite significant channel heterogeneities, and forms an efficacious substrate for evaluating the impact of biological heterogeneities on entorhinal network function. NEW & NOTEWORTHY We assessed the impact of heterogeneities in channel properties on the robustness of cellular-scale physiology of medial entorhinal cortical stellate neurons. We demonstrate that neuronal models with disparate channel combinations were endowed with similar physiological characteristics, as a consequence of the many-to-many mapping between channel properties and the physiological characteristics that they modulate. We predict that the spike-triggered average of stellate cells should be endowed with theta-frequency spectral selectivity and fast gamma-band coincidence detection capabilities.


Dendritic atrophy constricts functional maps in resonance and impedance properties of hippocampal model neurons.

  • Neha Dhupia‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2014‎

A gradient in the density of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels is necessary for the emergence of several functional maps within hippocampal pyramidal neurons. Here, we systematically analyzed the impact of dendritic atrophy on nine such functional maps, related to input resistance and local/transfer impedance properties, using conductance-based models of hippocampal pyramidal neurons. We introduced progressive dendritic atrophy in a CA1 pyramidal neuron reconstruction through a pruning algorithm, measured all functional maps in each pruned reconstruction, and arrived at functional forms for the dependence of underlying measurements on dendritic length. We found that, across frequencies, atrophied neurons responded with higher efficiency to incoming inputs, and the transfer of signals across the dendritic tree was more effective in an atrophied reconstruction. Importantly, despite the presence of identical HCN-channel density gradients, spatial gradients in input resistance, local/transfer resonance frequencies and impedance profiles were significantly constricted in reconstructions with dendritic atrophy, where these physiological measurements across dendritic locations converged to similar values. These results revealed that, in atrophied dendritic structures, the presence of an ion channel density gradient alone was insufficient to sustain homologous functional maps along the same neuronal topograph. We assessed the biophysical basis for these conclusions and found that this atrophy-induced constriction of functional maps was mediated by an enhanced spatial spread of the influence of an HCN-channel cluster in atrophied trees. These results demonstrated that the influence fields of ion channel conductances need to be localized for channel gradients to express themselves as homologous functional maps, suggesting that ion channel gradients are necessary but not sufficient for the emergence of functional maps within single neurons.


Dominant role of adult neurogenesis-induced structural heterogeneities in driving plasticity heterogeneity in dentate gyrus granule cells.

  • Sameera Shridhar‎ et al.
  • Hippocampus‎
  • 2022‎

Neurons and synapses manifest pronounced variability in the amount of plasticity induced by identical activity patterns. The mechanisms underlying such plasticity heterogeneity, which have been implicated in context-specific resource allocation during encoding, have remained unexplored. Here, we employed a systematic physiologically constrained parametric search to identify the cellular mechanisms behind plasticity heterogeneity in dentate gyrus granule cells. We used heterogeneous model populations to ensure that our conclusions were not biased by parametric choices in a single hand-tuned model. We found that each of intrinsic, synaptic, and structural heterogeneities independently yielded heterogeneities in synaptic plasticity profiles obtained with two different induction protocols. However, among the disparate forms of neural-circuit heterogeneities, our analyses demonstrated the dominance of neurogenesis-induced structural heterogeneities in driving plasticity heterogeneity in granule cells. We found that strong relationships between neuronal intrinsic excitability and plasticity emerged only when adult neurogenesis-induced heterogeneities in neural structure were accounted for. Importantly, our analyses showed that it was not imperative that the manifestation of neural-circuit heterogeneities must translate to heterogeneities in plasticity profiles. Specifically, despite the expression of heterogeneities in structural, synaptic, and intrinsic neuronal properties, similar plasticity profiles were attainable across all models through synergistic interactions among these heterogeneities. We assessed the parametric combinations required for the manifestation of such degeneracy in the expression of plasticity profiles. We found that immature cells showed physiological plasticity profiles despite receiving afferent inputs with weak synaptic strengths. Thus, the high intrinsic excitability of immature granule cells was sufficient to counterbalance their low excitatory drive in the expression of plasticity profile degeneracy. Together, our analyses demonstrate that disparate forms of neural-circuit heterogeneities could mechanistically drive plasticity heterogeneity, but also caution against treating neural-circuit heterogeneities as proxies for plasticity heterogeneity. Our study emphasizes the need for quantitatively characterizing the relationship between neural-circuit and plasticity heterogeneities across brain regions.


Inactivating ion channels augment robustness of subthreshold intrinsic response dynamics to parametric variability in hippocampal model neurons.

  • Rahul Kumar Rathour‎ et al.
  • The Journal of physiology‎
  • 2012‎

Voltage-gated ion channels play a critical role in regulating neuronal intrinsic response dynamics (IRD). Here, we computationally analysed the roles of the two inactivating subthreshold conductances (A and T), individually and in various combinations with the non-inactivating h conductance, in regulating several physiological IRD measurements in the theta frequency range. We found that the independent presence of a T conductance, unlike that of an h conductance, was unable to sustain an inductive phase lead in the theta frequency range, despite its ability to mediate theta frequency resonance. The A conductance, on the other hand, when expressed independently, acted in a manner similar to a leak conductance with reference to most IRD measurements. Next, analysing the impact of pair-wise coexpression of these channels, we found that the coexpression of the h and T conductances augmented the range of parameters over which they sustained resonance and inductive phase lead. Additionally, coexpression of the A conductance with the h or the T conductance elicited changes in IRD measurements that were similar to those obtained with the expression of a leak conductance with a resonating conductance. Finally, to understand the global sensitivity of IRD measurements to all parameters associated with models expressing all three channels, we generated 100,000 neuronal models, each built with a unique set of parametric values. We categorized valid models among these by matching their IRD measurements with experimental counterparts, and found that functionally similar models could be achieved even when underlying parameters displayed tremendous variability and exhibited weak pair-wise correlations. Our results suggest that the three prominent subthreshold conductances contribute differently to intrinsic excitability and to phase coding. We postulate that the differential expression and activity-dependent plasticity of these conductances contribute to robustness of subthreshold IRD, whereby response homeostasis is achieved by recruiting several non-unique combinations of these channel parameters.


Ion-channel regulation of response decorrelation in a heterogeneous multi-scale model of the dentate gyrus.

  • Poonam Mishra‎ et al.
  • Current research in neurobiology‎
  • 2021‎

Heterogeneities in biological neural circuits manifest in afferent connectivity as well as in local-circuit components such as neuronal excitability, neural structure and local synaptic strengths. The expression of adult neurogenesis in the dentate gyrus (DG) amplifies local-circuit heterogeneities and guides heterogeneities in afferent connectivity. How do neurons and their networks endowed with these distinct forms of heterogeneities respond to perturbations to individual ion channels, which are known to change under several physiological and pathophysiological conditions? We sequentially traversed the ion channels-neurons-network scales and assessed the impact of eliminating individual ion channels on conductance-based neuronal and network models endowed with disparate local-circuit and afferent heterogeneities. We found that many ion channels differentially contributed to specific neuronal or network measurements, and the elimination of any given ion channel altered several functional measurements. We then quantified the impact of ion-channel elimination on response decorrelation, a well-established metric to assess the ability of neurons in a network to convey complementary information, in DG networks endowed with different forms of heterogeneities. Notably, we found that networks constructed with structurally immature neurons exhibited functional robustness, manifesting as minimal changes in response decorrelation in the face of ion-channel elimination. Importantly, the average change in output correlation was dependent on the eliminated ion channel but invariant to input correlation. Our analyses suggest that neurogenesis-driven structural heterogeneities could assist the DG network in providing functional resilience to molecular perturbations.


Disparate forms of heterogeneities and interactions among them drive channel decorrelation in the dentate gyrus: Degeneracy and dominance.

  • Poonam Mishra‎ et al.
  • Hippocampus‎
  • 2019‎

The ability of a neuronal population to effectuate channel decorrelation, which is one form of response decorrelation, has been identified as an essential prelude to efficient neural encoding. To what extent are diverse forms of local and afferent heterogeneities essential in accomplishing channel decorrelation in the dentate gyrus (DG)? Here, we incrementally incorporated four distinct forms of biological heterogeneities into conductance-based network models of the DG and systematically delineate their relative contributions to channel decorrelation. First, to effectively incorporate intrinsic heterogeneities, we built physiologically validated heterogeneous populations of granule (GC) and basket cells (BC) through independent stochastic search algorithms spanning exhaustive parametric spaces. These stochastic search algorithms, which were independently constrained by experimentally determined ion channels and by neurophysiological signatures, revealed cellular-scale degeneracy in the DG. Specifically, in GC and BC populations, disparate parametric combinations yielded similar physiological signatures, with underlying parameters exhibiting significant variability and weak pair-wise correlations. Second, we introduced synaptic heterogeneities through randomization of local synaptic strengths. Third, in including adult neurogenesis, we subjected the valid model populations to randomized structural plasticity and matched neuronal excitability to electrophysiological data. We assessed networks comprising different combinations of these three local heterogeneities with identical or heterogeneous afferent inputs from the entorhinal cortex. We found that the three forms of local heterogeneities were independently and synergistically capable of mediating significant channel decorrelation when the network was driven by identical afferent inputs. However, when we incorporated afferent heterogeneities into the network to account for the divergence in DG afferent connectivity, the impact of all three forms of local heterogeneities was significantly suppressed by the dominant role of afferent heterogeneities in mediating channel decorrelation. Our results unveil a unique convergence of cellular- and network-scale degeneracy in the emergence of channel decorrelation in the DG, whereby disparate forms of local and afferent heterogeneities could synergistically drive input discriminability.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: