Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Biotransformation of Deoxynivalenol by a Dual-Member Bacterial Consortium Isolated from Tenebrio molitor Larval Feces.

  • Yang Wang‎ et al.
  • Toxins‎
  • 2023‎

In this study, a dual-member bacterial consortium with the ability to oxidize deoxynivalenol (DON) to 3-keto-DON, designated SD, was first screened from the feces of Tenebrio molitor larvae. This consortium consisted of Pseudomonas sp. SD17-1 and Devosia sp. SD17-2, as determined by 16S rRNA-based phylogenetic analysis. A temperature of 30 °C, a pH of 8.0-9.0, and an initial inoculum concentration ratio of Devosia to Pseudomonas of 0.1 were optimal single-factor parameters for the DON oxidation activity of the bacterial consortium SD. Genome-based bioinformatics analysis revealed the presence of an intact PQQ biosynthesis operon (pqqFABCDEG) and four putative pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) genes in the genomes of Pseudomonas strain SD17-1 and Devosia strain SD17-2, respectively. Biochemical analyses further confirmed the PQQ-producing phenotype of Pseudomonas and the DON-oxidizing enzymatic activities of two of four PQQ-dependent ADHs in Devosia. The addition of PQQ-containing a cell-free fermentation supernatant from Pseudomonas activated DON-oxidizing activity of Devosia. In summary, as members of the bacterial consortium SD, Pseudomonas and Devosia play indispensable and complementary roles in SD's oxidation of DON. Specifically, Pseudomonas is responsible for producing the necessary PQQ cofactor, whereas Devosia expresses the PQQ-dependent DON dehydrogenase, together facilitating the oxidation of DON.


Comparison of the bacterial communities in feces from wild versus housed sables (Martes zibellina) by high-throughput sequence analysis of the bacterial 16S rRNA gene.

  • Yu Guan‎ et al.
  • AMB Express‎
  • 2016‎

The composition of mammalian intestinal microflora is related to many environmental and geographical factors, and it plays an important role in many aspects such as growth and development. Sequencing data of the bacterial 16S rRNA gene from sable (Martes zibellina) samples using next-generation sequencing technology are limited. In our research, 84,116 reads obtained by high-throughput sequencing were analyzed to characterize and compare the intestinal microflora of wild sables and housed sables. Firmicutes (31.1 %), Bacteroidetes (26.0 %) and Proteobacteria (21.5 %) were the three most abundant phyla present in wild sables, whereas Firmicutes (55.6 %), Proteobacteria (29.1 %) and Actinobacteria (6.0 %) were the three predominant phyla present in housed sables. At the phylum level, wild sables exhibited a significant difference in the relative abundances of Bacteroidetes and Actinobacteria, whereas housed sables only exhibited significant changes in TM7 at the phylum level, and Clostridia, at the class level. The predominance of Bacteroidetes in wild sables warrants further research. These results indicate that a sudden change in diet may be a key factor that influences fecal bacterial diversity in mammals.


Four PQQ-Dependent Alcohol Dehydrogenases Responsible for the Oxidative Detoxification of Deoxynivalenol in a Novel Bacterium Ketogulonicigenium vulgare D3_3 Originated from the Feces of Tenebrio molitor Larvae.

  • Yang Wang‎ et al.
  • Toxins‎
  • 2023‎

Deoxynivalenol (DON) is frequently detected in cereals and cereal-based products and has a negative impact on human and animal health. In this study, an unprecedented DON-degrading bacterial isolate D3_3 was isolated from a sample of Tenebrio molitor larva feces. A 16S rRNA-based phylogenetic analysis and genome-based average nucleotide identity comparison clearly revealed that strain D3_3 belonged to the species Ketogulonicigenium vulgare. This isolate D3_3 could efficiently degrade 50 mg/L of DON under a broad range of conditions, such as pHs of 7.0-9.0 and temperatures of 18-30 °C, as well as during aerobic or anaerobic cultivation. 3-keto-DON was identified as the sole and finished DON metabolite using mass spectrometry. In vitro toxicity tests revealed that 3-keto-DON had lower cytotoxicity to human gastric epithelial cells and higher phytotoxicity to Lemna minor than its parent mycotoxin DON. Additionally, four genes encoding pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases in the genome of isolate D3_3 were identified as being responsible for the DON oxidation reaction. Overall, as a highly potent DON-degrading microbe, a member of the genus Ketogulonicigenium is reported for the first time in this study. The discovery of this DON-degrading isolate D3_3 and its four dehydrogenases will allow microbial strains and enzyme resources to become available for the future development of DON-detoxifying agents for food and animal feed.


Fecal Microbiota and Its Correlation With Fatty Acids and Free Amino Acids Metabolism in Piglets After a Lactobacillus Strain Oral Administration.

  • Dongyan Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Lactobacillus has a positive effect on the host intestinal microbiota. In piglets, dietary supplementation with Lactobacillus affects general health and plays an important role in nutrient digestion and fermentation. However, this association requires further investigation. Here, we studied newborn piglets from 12 litters. The nursed piglets were given a creep feed beginning on day 10 post-partum and weaned at day 30. Piglets were fed either a control basic diet or a diet including supplementation with Lactobacillus reuteri ZLR003 at 6.0 × 106 CFU/g feed. At day 30 and 60, feces samples were taken and used for sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. At day 60, feces samples and serum samples were also taken and used to measure the short chain fatty acids (SCFAs) and to detect long chain fatty acids (LCFAs) and free amino acids (FAAs), respectively. The results revealed that L. reuteri ZLR003 could improve piglet fecal microbiota composition, especially at the end of weaned period. The concentrations of lactic acid and butyric acid in feces were higher, and acetic acid concentration was lower in the L. reuteri ZLR003 group compared with the control group (P < 0.05). The serum polyunsaturated fatty acids C18:2n6c, C18:3n3, C20:4n6, and C22:6n3 were significantly higher (P < 0.05), as were the serum FAAs Gly, Ala, Val, Iso, Asn, Asp, Glu, Met, Phe, and Leu (P < 0.05), in the L. reuteri group compared with the control group. A correlation analysis revealed that the genera Ruminococcaceae_UCG-010 and Ruminococcaceae_UCG-014 had a negative correlation with the SCFAs content in feces, the genus Prevotella_9 had a higher positive correlation with C18:2n6c, and the genera Megasphaera and Mitsuokella had a more positive significant effect on the serum FAAs content in weaned piglets in the L. reuteri ZLR003 group compared with the control group. In conclusion, L. reuteri ZLR003 influenced the fecal microbiota composition of piglets, and its effects were related to the metabolism of SCFAs, LCFAs, and FAAs. Our findings will help facilitate the application of Lactobacillus strains in pig production.


Identification of motor neurons and a mechanosensitive sensory neuron in the defecation circuitry of Drosophila larvae.

  • Wei Zhang‎ et al.
  • eLife‎
  • 2014‎

Defecation allows the body to eliminate waste, an essential step in food processing for animal survival. In contrast to the extensive studies of feeding, its obligate counterpart, defecation, has received much less attention until recently. In this study, we report our characterizations of the defecation behavior of Drosophila larvae and its neural basis. Drosophila larvae display defecation cycles of stereotypic frequency, involving sequential contraction of hindgut and anal sphincter. The defecation behavior requires two groups of motor neurons that innervate hindgut and anal sphincter, respectively, and can excite gut muscles directly. These two groups of motor neurons fire sequentially with the same periodicity as the defecation behavior, as revealed by in vivo Ca(2+) imaging. Moreover, we identified a single mechanosensitive sensory neuron that innervates the anal slit and senses the opening of the intestine terminus. This anus sensory neuron relies on the TRP channel NOMPC but not on INACTIVE, NANCHUNG, or PIEZO for mechanotransduction.


High-altitude hypoxia exacerbates dextran sulfate sodium (DSS)-induced colitis by upregulating Th1 and Th17 lymphocytes.

  • Mohammed Gamah‎ et al.
  • Bioengineered‎
  • 2021‎

High altitude hypoxia (HAH) involves the pathogenesis of ulcerative colitis (UC) and gastrointestinal erosions. However, the mechanism of effects of HAH in colitis remains controversial. This study reports the immunomodulation mediated by HAH to enhancing the severity of UC in the mice model. BALB/c mice were used to establish the UC model by dextran sulfate sodium (DSS) compared to wild type mice. Mice groups were exposed to hypoxic conditions in a hypobaric chamber with an altitude of 5000 m for 7 days. Then, Spleen, mesenteric lymph nodes and colon tissues were collected. The activity of UC, the infiltration of the immune cells, and the released cytokines were investigated. Results showed that the severity of DSS-induced UC significantly increased in mice exposed to HAH. The analysis of pathological changes showed increased weight loss and decreased colon length accompanied by diarrhea and bloody feces in the hypobaric hypoxia group. Interestingly, the levels of inflammatory cytokines IL-17, TNF-α, and IFN-γ in the spleen and mesenteric lymph node showed a significant increase within the colon of the hypobaric hypoxia group. The population of Th 1 and Th 17 cells in the spleen was significantly increased in mice exposed to hypobaric hypoxia compared NC group. Suggesting that high altitude hypoxia enhances colitis in mice through activating the increase of inflammatory Th1 and Th17 lymphocytes. In conclusion, this study revealed that hypobaric hypoxia directly increases the severity of UC in the mice model via increasing the activity of inflammatory CD4+ Th1 and Th 17 lymphocytes.


Prevalence and Molecular Characterization of Intestinal Trichomonads in Pet Dogs in East China.

  • Wen-Chao Li‎ et al.
  • The Korean journal of parasitology‎
  • 2016‎

The trichomonad species Tritrichomonas foetus and Pentatrichomonas hominis were recently detected in the feces of dogs with diarrhea. However, little information is available on the prevalence and pathogenicity of these parasites in the canine population. Therefore, the aim of this study was to determine the prevalence and molecular characterization of trichomonads infecting pet dogs in Anhui and Zhejiang provinces, east China. In total, 315 pet dogs, with or without diarrhea, from 7 pet hospitals were included in this epidemiological survey. Microscopy and PCR detected P. hominis in 19.7% (62/315) and 31.4% (99/315) of fecal samples, respectively. T. foetus infection was detected in 0% (0/315) of samples with microscopy and in 0.6% (2/315) with PCR. The prevalence of P. hominis was significantly higher in young dogs (≤12 months) than in adult dogs (>12 months), and was significantly higher in diarrheic dogs (50.6%) than in non-diarrheic dogs (24.3%; P<0.05). Infection with T. foetus did not correlate with any risk factors evaluated in this study. A sequence analysis of the P. hominis PCR products showed minor allelic variations between our sequences and those of P. hominis strains from other hosts in different parts of the world. Type CC1 was the most common strain in dogs in east China. The internal transcribed spacer 1 (ITS1)-5.8S rRNA gene sequences from the 2 T. foetus isolates detected in this study displayed 100% identity and were homologous to the sequences of other strains isolated from domestic cats in other countries.


Effect of Gut Microbiota on the Pharmacokinetics of Nifedipine in Spontaneously Hypertensive Rats.

  • Rong Zhou‎ et al.
  • Pharmaceutics‎
  • 2023‎

The pharmacokinetic variability of nifedipine widely observed in the clinic cannot be fully explained by pharmacogenomics. As a new factor affecting drug metabolism, how the gut microbiota affects the pharmacokinetics of nifedipine needs to be explored. Spontaneously hypertensive rats (SHRs) have been commonly used in hypertension-related research and served as the experimental groups; Wistar rats were used as control groups. In this study, the bioavailability of nifedipine decreased by 18.62% (p < 0.05) in the SHRs compared with the Wistar rats. Changes in microbiota were associated with the difference in pharmacokinetics. The relative abundance of Bacteroides dorei was negatively correlated with AUC0-t (r = -0.881, p = 0.004) and Cmax (r = -0.714, p = 0.047). Analysis of serum bile acid (BA) profiles indicated that glycoursodeoxycholic acid (GUDCA) and glycochenodeoxycholic acid (GCDCA) were significantly increased in the SHRs. Compared with the Wistar rats, the expressions of CYP3A1 and PXR were upregulated and the enzyme activity of CYP3A1 increased in the SHRs. Spearman's rank correlation revealed that Bacteroides stercoris was negatively correlated with GUDCA (r = -0.7126, p = 0.0264) and GCDCA (r = -0.6878, p = 0.0339). Moreover, GUDCA was negatively correlated with Cmax (r = -0.556, p = 0.025). In primary rat hepatocytes, GUDCA could induce the expressions of PXR target genes CYP3A1 and Mdr1a. Furthermore, antibiotic treatments in SHRs verified the impact of microbiota on the pharmacokinetics of nifedipine. Generally, gut microbiota affects the pharmacokinetics of nifedipine through microbial biotransformation or by regulating the enzyme activity of CYP3A1.


Altered gut microbial profile is associated with differentially expressed fecal microRNAs in patients with functional constipation.

  • Junpeng Yao‎ et al.
  • Frontiers in microbiology‎
  • 2023‎

While dysbiosis within the intestinal ecosystem has been associated with functional constipation (FC), the mechanisms underlying the interactions between FC and the microbiome remain poorly elucidated. Recent investigations suggested that host microRNAs (miRNAs) can modulate bacterial growth and influence the composition of the gut microbiome. To explore the connection between gut microbiota and fecal miRNAs in FC patients, we initially employed 16S rRNA sequencing to assess the gut microbial landscape in 30 FC patients and 30 healthy controls (HCs). The α-diversity within the FC group exhibited some alterations, and the β-diversity significantly differed, signifying distinctive variations in gut microbiota composition between FC patients and HCs. Subsequently, we identified 44 differentially expressed (DE) miRNAs in feces from FC patients and HCs. Through correlation analysis between DE miRNAs and FC-associated microbiota, we detected an interaction involving nine DE miRNAs (miR-205-5p, miR-493-5p, miR-215-5p, miR-184, miR-378c, miR-335-5p, miR-514a-3p, miR-141-3p, and miR-34c-5p) with seven bacterial genera (Oscillibacter, Escherichia.Shigella, UCG.002, Lachnospiraceae_NK4A136_group, Lachnospiraceae_UCG.010, Eubacterium_ruminantium_group and Megamonas), as evidenced by a co-occurrence network. Further, a comprehensive panel of seven diagnostic biomarkers (Oscillibacter, Escherichia.Shigella, UCG.002, miR-205-5p, miR-493-5p, miR-215-5p, and Lachnospiraceae_NK4A136_group) demonstrated robust discriminatory capacity in predicting FC status when integrated into a random forest model (AUC = 0.832, 95% CI: 65.73-98.88). Microbiomes correlating with DE miRNAs exhibited enrichment in distinct predicted metabolic categories. Moreover, miRNAs correlated with FC-associated bacteria were found to be enriched in signaling pathways linked to colonic contractility, including Axon guidance, PI3K-Akt signaling pathway, MAPK signaling pathway, and Hippo signaling pathway. Our study offers a comprehensive insight into the global relationship between microbiota and fecal miRNAs in the context of FC, presenting potential targets for further experimental validation and therapeutic interventions.


Complete Genome Sequencing and Comparative Genome Characterization of Lactobacillus johnsonii ZLJ010, a Potential Probiotic With Health-Promoting Properties.

  • Wei Zhang‎ et al.
  • Frontiers in genetics‎
  • 2019‎

Lactobacillus johnsonii ZLJ010 is a probiotic strain isolated from the feces of a healthy sow and has putative health-promoting properties. To determine the molecular basis underlying the probiotic potential of ZLJ010 and the genes involved in the same, complete genome sequencing and comparative genome analysis with L. johnsonii ZLJ010 were performed. The ZLJ010 genome was found to contain a single circular chromosome of 1,999,879 bp with a guanine-cytosine (GC) content of 34.91% and encoded 18 ribosomal RNA (rRNA) genes and 77 transfer RNA (tRNA) genes. From among the 1,959 protein coding sequences (CDSs), genes known to confer probiotic properties were identified, including genes related to stress adaptation, biosynthesis, metabolism, transport of amino acid, secretion, and the defense machinery. ZLJ010 lacked complete or partial biosynthetic pathways for amino acids but was predicted to compensate for this with an enhanced transport system and some unique amino acid permeases and peptidases that allow it to acquire amino acids and other precursors exogenously. The comparative genomic analysis of L. johnsonii ZLP001 and seven other available L. johnsonii strains, including L. johnsonii NCC533, FI9785, DPC6026, N6.2, BS15, UMNLJ22, and PF01, revealed 2,732 pan-genome orthologous gene clusters and 1,324 core-genome orthologous gene clusters. Phylogenomic analysis based on 1,288 single copy genes showed that ZLJ010 had a closer relationship with the BS15 from yogurt and DPC6026 from the porcine intestinal tract but was located on a relatively standalone branch. The number of clusters of unique, strain-specific genes ranged from 42 to 185. A total of 219 unique genes present in the genome of L. johnsonii ZLJ010 primarily encoded proteins that are putatively involved in replication, recombination and repair, defense mechanisms, transcription, amino acid transport and metabolism, and carbohydrate transport and metabolism. Two unique prophages were predicted in the ZLJ010 genome. The present study helps us understand the ability of L. johnsonii ZLJ010 to better adapt to the gut environment and also its probiotic functionalities.


Electrochemical Processes Coupled to a Biological Treatment for the Removal of Iodinated X-ray Contrast Media Compounds.

  • Wei Zhang‎ et al.
  • Frontiers in chemistry‎
  • 2020‎

Iodinated X-ray contrast media (ICM) compounds are a form of intravenous radiocontrast containing iodine, which are rapidly eliminated via urine or feces. The issue with the accumulation of ICM has received considerable critical attention since they are ubiquitously distributed in municipal wastewater effluents and in the aquatic environment and are not significantly eliminated by most biological sewage treatment processes. Among the methods that have been tested to eliminate ICM, electrochemical methods have significant advantages, since they can selectively cut the carbon-iodine bonds that are suspected to decrease their biodegradability. On the production sites, the recovery of iodine ions due to the carbon-iodine cleavage can be envisaged, which is particularly interesting to reduce the cost of the ICM production process. The coupling of an electrochemical process and a biological treatment can be carried out to mineralize the organic part of the formed by-products, allowing the recovery of the iodide ions. Therefore, the degradation of diatrizoate, a typical ionic ICM compound, by an electrochemical process was the purpose of this study. The electrochemical reduction of diatrizoate was performed using a flow cell with a graphite felt electrode at different potentials. The removal yield of diatrizoate reached ~100% in 2 h and the main product, 3,5-diacetamidobenzoic acid, was quantitatively formed, showing that diatrizoate was almost completely deiodinated. According to the BOD5/COD ratio, the biodegradability of diatrizoate after electrolysis was considerably improved. Cyclic voltammetry analysis of the electroreduced solution showed several oxidation peaks. The electrochemical oxidation of the by-products formed after the first treatment by electroreduction was then performed at three different potentials to study the influence of electrochemical oxidation on biodegradability. Results showed that the degradation yield of the deiodinated by-products increased with the potential and reached 100% at 1.3 V/SCE. Four different biological treatments were implemented during 21 days in stirred flasks with fresh activated sludge. The evolution of the mineralization during the biological treatment highlighted the biorecalcitrance of diatrizoate as previously estimated by the BOD5/COD ratio. Interestingly, the mineralization yield increased from 41 to 60% when electrochemical oxidation at 1.3 V/SCE was implemented after electroreduction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: