Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Molecular evidence for the presence of Rickettsia Felis in the feces of wild-living African apes.

  • Alpha Kabinet Keita‎ et al.
  • PloS one‎
  • 2013‎

Rickettsia felis is a common emerging pathogen detected in mosquitoes in sub-Saharan Africa. We hypothesized that, as with malaria, great apes may be exposed to the infectious bite of infected mosquitoes and release R. felis DNA in their feces.


Divergent Gemycircularvirus in HIV-Positive Blood, France.

  • Rathviro Uch‎ et al.
  • Emerging infectious diseases‎
  • 2015‎

No abstract available


Tropheryma whipplei in children with gastroenteritis.

  • Didier Raoult‎ et al.
  • Emerging infectious diseases‎
  • 2010‎

Tropheryma whipplei, which causes Whipple disease, is found in human feces and may cause gastroenteritis. To show that T. whipplei causes gastroenteritis, PCRs for T. whipplei were conducted with feces from children 2-4 years of age. Western blotting was performed for samples from children with diarrhea who had positive or negative results for T. whipplei. T. whipplei was found in samples from 36 (15%) of 241 children with gastroenteritis and associated with other diarrheal pathogens in 13 (33%) of 36. No positive specimen was detected for controls of the same age (0/47; p = 0.008). Bacterial loads in case-patients were as high as those in patients with Whipple disease and significantly higher than those in adult asymptomatic carriers (p = 0.002). High incidence in patients and evidence of clonal circulation suggests that some cases of gastroenteritis are caused or exacerbated by T. whipplei, which may be co-transmitted with other intestinal pathogens.


Detection of termites and other insects consumed by African great apes using molecular fecal analysis.

  • Ibrahim Hamad‎ et al.
  • Scientific reports‎
  • 2014‎

The consumption of insects by apes has previously been reported based on direct observations and/or trail signs in feces. However, DNA-based diet analyses may have the potential to reveal trophic links for these wild species. Herein, we analyzed the insect-diet diversity of 9 feces obtained from three species of African great apes, gorilla (Gorilla gorilla gorilla), chimpanzee (Pan troglodytes) and bonobo (Pan paniscus), using two mitochondrial amplifications for arthropods. A total of 1056 clones were sequenced for Cyt-b and COI gene libraries, which contained 50 and 56 operational taxonomic units (OTUs), respectively. BLAST research revealed that the OTUs belonged to 32 families from 5 orders (Diptera, Isoptera, Lepidoptera, Coleoptera, and Orthoptera). While ants were not detected by this method, the consumption of flies, beetles, moths, mosquitoes and termites was evident in these samples. Our findings indicate that molecular techniques can be used to analyze insect food items in wild animals.


Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients.

  • Fabrice Armougom‎ et al.
  • PloS one‎
  • 2009‎

Studies of the bacterial communities of the gut microbiota have revealed a shift in the ratio of Firmicutes and Bacteroidetes in obese patients. Determining the variations of microbial communities in feces may be beneficial for the identification of specific profiles in patients with abnormal weights. The roles of the archaeon Methanobrevibacter smithii and Lactobacillus species have not been described in these studies.


Detection of a Potential New Bartonella Species "Candidatus Bartonella rondoniensis" in Human Biting Kissing Bugs (Reduviidae; Triatominae).

  • Maureen Laroche‎ et al.
  • PLoS neglected tropical diseases‎
  • 2017‎

Among the Reduviidae family, triatomines are giant blood-sucking bugs. They are well known in Central and South America where they transmit Trypanosoma cruzi to mammals, including humans, through their feces. This parasitic protozoan is the causative agent of Chagas disease, a major public health issue in endemic areas. Because of the medical and economic impact of Chagas disease, the presence of other arthropod-borne pathogens in triatomines was rarely investigated.


Parasitic Infections in African Humans and Non-Human Primates.

  • Hacène Medkour‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2020‎

Different protozoa and metazoa have been detected in great apes, monkeys and humans with possible interspecies exchanges. Some are either nonpathogenic or their detrimental effects on the host are not yet known. Others lead to serious diseases that can even be fatal. Their survey remains of great importance for public health and animal conservation. Fecal samples from gorillas (Gorilla gorilla) and humans living in same area in the Republic of Congo, chimpanzees (Pan troglodytes) from Senegal and one other from the Republic of Congo, Guinea baboons (Papio papio) from Senegal, hamadryas baboons (Papio hamadryas) from Djibouti and Barbary macaques (Macaca sylvanus) from Algeria, were collected. DNA was extracted and screened using specific qPCR assays for the presence of a large number of helminths and protozoa. Positive samples were then amplified in standard PCRs and sequenced when possible. Overall, infection rate was 36.5% in all non-human primates (NHPs) and 31.6% in humans. Great apes were more often infected (63.6%) than monkeys (7.3%). At least twelve parasite species, including ten nematodes and two protozoa were discovered in NHPs and five species, including four nematodes and a protozoan in humans. The prevalences of Giarida lamblia, Necator americanus, Enterobius vermicularis, Strongyloides stercoralis were similar between gorillas and human community co-habiting the same forest ecosystem in the Republic of Congo. In addition, human specific Mansonella perstans (5.1%) and other Mansonella spp. (5.1%) detected in these gorillas suggest a possible cross-species exchange. Low prevalence (2%) of Ascaris lumbricoides, Enterobius vermicularis, Strongyloides stercoralis were observed in chimpanzees, as well as a high prevalence of Abbreviata caucasica (57.1%), which should be considered carefully as this parasite can affect other NHPs, animals and humans. The Barbary macaques were less infected (7.2%) and Oesophagostomum muntiacum was the main parasite detected (5.8%). Finally, we report the presence of Pelodera sp. and an environmental Nematoda DNAs in chimpanzee feces, Nematoda sp. and Bodo sp. in gorillas, as well as DNA of uncharacterized Nematoda in apes and humans, but with a relatively lower prevalence in humans. Prevalence of extraintestinal parasites remains underestimated since feces are not the suitable sampling methods. Using non-invasive sampling (feces) we provide important information on helminths and protozoa that can infect African NHPs and human communities living around them. Public health and animal conservation authorities need to be aware of these infections, as parasites detected in African NHPs could affect both human and other animals' health.


Tropheryma whipplei as a Cause of Epidemic Fever, Senegal, 2010-2012.

  • Hubert Bassene‎ et al.
  • Emerging infectious diseases‎
  • 2016‎

The bacterium Tropheryma whipplei, which causes Whipple disease in humans, is commonly detected in the feces of persons in Africa. It is also associated with acute infections. We investigated the role of T. whipplei in febrile patients from 2 rural villages in Senegal. During June 2010-March 2012, we collected whole-blood finger-prick samples from 786 febrile and 385 healthy villagers. T. whipplei was detected in blood specimens from 36 (4.6%) of the 786 febrile patients and in 1 (0.25%) of the 385 apparently healthy persons. Of the 37 T. whipplei cases, 26 (70.2%) were detected in August 2010. Familial cases and a potential new genotype were observed. The patients' symptoms were mainly headache (68.9%) and cough (36.1%). Our findings suggest that T. whipplei is a cause of epidemic fever in Senegal.


Clostridium polynesiense sp. nov., a new member of the human gut microbiota in French Polynesia.

  • Senthil Alias Sankar‎ et al.
  • Anaerobe‎
  • 2015‎

Strain MS1, a Gram-positive, obligately anaerobic, motile and spore-forming rod belonging to the Clostridium genus, was isolated from the feces of a healthy Polynesian male living in French Polynesia. The temperature range for growth was 30-45 °C. We sequenced its complete genome and studied its phenotypic characteristics. The 3,560,738-bp long genome (one chromosome, no plasmid, G + C content 34%) contained 3535 protein-coding and 70 RNA genes. Strain MS1 exhibited a 98.24% 16S rRNA similarity with Clostridium amylolyticum, the phylogenetically closest species. When compared with other Clostridium species with standing in nomenclature, it had an average genomic similarity of 68.8-70%, a unique MALDI-TOF spectrum, and differed in nitrate reduction, motility and L-arabinose and D-lactose metabolism with most of the closest species. Therefore, strain MS1 is sufficiently distinct from type strains of the genus Clostridium to represent a novel species within this genus, for which the name Clostridium polynesiense sp. nov. is proposed. The type strain of C. polynesiense is MS1(T) (= CSUR P630 = DSM 27072).


Enteroviruses from Humans and Great Apes in the Republic of Congo: Recombination within Enterovirus C Serotypes.

  • Inestin Amona‎ et al.
  • Microorganisms‎
  • 2020‎

Enteroviruses (EVs) are viruses of the family Picornaviridae that cause mild to severe infections in humans and in several animal species, including non-human primates (NHPs). We conducted a survey and characterization of enteroviruses circulating between humans and great apes in the Congo. Fecal samples (N = 24) of gorillas and chimpanzees living close to or distant from humans in three Congolese parks were collected, as well as from healthy humans (N = 38) living around and within these parks. Enteroviruses were detected in 29.4% of gorilla and 13.15% of human feces, including wild and human-habituated gorillas, local humans and eco-guards. Two identical strains were isolated from two humans coming from two remote regions. Their genomes were similar and all genes showed their close similarity to coxsackieviruses, except for the 3C, 3D and 5'-UTR regions, where they were most similar to poliovirus 1 and 2, suggesting recombination. Recombination events were found between these strains, poliovirus 1 and 2 and EV-C99. It is possible that the same EV-C species circulated in both humans and apes in different regions in the Congo, which must be confirmed in other investigations. In addition, other studies are needed to further investigate the circulation and genetic diversity of enteroviruses in the great ape population, to draw a definitive conclusion on the different species and types of enteroviruses circulating in the Republic of Congo.


Zoonotic Abbreviata caucasica in Wild Chimpanzees (Pan troglodytes verus) from Senegal.

  • Younes Laidoudi‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2020‎

Abbreviata caucasica (syn. Physaloptera mordens) has been reported in human and various non-human primates including great apes. The identification of this nematode is seldom performed and relies on egg characterization at the coproscopy, in the absence of any molecular tool. Following the recovery of two adult females of A. caucasica from the feces of wild Senegalese chimpanzees, morphometric characteristics were reported and new data on the width of the esophagus (0.268-0.287 mm) and on the cuticle structure (0.70-0.122 mm) were provided. The molecular characterization of a set of mitochondrial (cox1, 16S rRNA, 12S rRNA) and nuclear (18S rRNA and ITS2) partial genes was performed. Our phylogenetic analysis indicates for the first time that A. caucasica is monophyletic with Physaloptera species. A novel molecular tool was developed for the routine diagnosis of A. caucasica and the surveillance of Nematoda infestations. An A. caucasica-specific qPCR targeting the 12S gene was assessed. The assay was able to detect up to 1.13 × 10-3 eggs/g of fecal matter irrespective of its consistency, with an efficiency of 101.8% and a perfect adjustment (R2 = 0.99). The infection rate by A. caucasica in the chimpanzee fecal samples was 52.08%. Only 6.19% of the environmental samples were positive for nematode DNA and any for A. caucasica. Our findings indicate the need for further studies to clarify the epidemiology, circulation, life cycle, and possible pathological effects of this infestation using the molecular tool herein developed.


The Presence of Acinetobacter baumannii DNA on the Skin of Homeless People and Its Relationship With Body Lice Infestation. Preliminary Results.

  • Tran Duc Anh Ly‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2019‎

The presence of Acinetobacter baumannii was demonstrated in body lice, however, little is known about the mechanism of natural lice infection. In 2013 and 2014, cross-sectional one-day studies were therefore performed within two Marseille homeless shelters to assess the presence of A. baumannii DNA on human skin, blood and in body lice collected from the same homeless individuals. All 332 participants completed questionnaires, were examined for dermatologic signs, and provided four skin samples (hair, neck, armpits, and pelvic belt), blood samples and body lice (if any). We developed a new real-time PCR tool targeting the ompA/motB gene for the detection of A. baumannii for all collected samples. Blood culture was also performed. Body lice were found in 24/325 (7.4%) of subjects. We showed a prevalence of A. baumannii DNA skin-carriage in 33/305 (10.8%) of subjects. No difference was found in A. baumannii DNA prevalence according to body sites. A strong association between body lice infestation (OR = 3.07, p = 0.029) and A. baumannii DNA skin-carriage was noted. In lice, A. baumannii DNA was detected in 59/219 arthropods (26.9%). All blood cultures and real-time PCR on blood samples were negative for A. baumannii. Lice probably get infected with A. baumannii while biting through the colonized skin and likely transmit the bacteria in their feces. We found no evidence that lice facilitate the invasion of A. baumannii into the blood stream. Further investigations are needed to compare phenotypic and genotypic features of A. baumannii isolates from human skin and lice from the same individuals.


Potential zoonotic pathogens hosted by endangered bonobos.

  • Hacène Medkour‎ et al.
  • Scientific reports‎
  • 2021‎

Few publications, often limited to one specific pathogen, have studied bonobos (Pan paniscus), our closest living relatives, as possible reservoirs of certain human infectious agents. Here, 91 stool samples from semicaptive bonobos and bonobos reintroduced in the wild, in the Democratic Republic of the Congo, were screened for different infectious agents: viruses, bacteria and parasites. We showed the presence of potentially zoonotic viral, bacterial or parasitic agents in stool samples, sometimes coinfecting the same individuals. A high prevalence of Human mastadenoviruses (HAdV-C, HAdV-B, HAdV-E) was observed. Encephalomyocarditis viruses were identified in semicaptive bonobos, although identified genotypes were different from those identified in the previous fatal myocarditis epidemic at the same site in 2009. Non-pallidum Treponema spp. including symbiotic T. succinifaciens, T. berlinense and several potential new species with unknown pathogenicity were identified. We detected DNA of non-tuberculosis Mycobacterium spp., Acinetobacter spp., Salmonella spp. as well as pathogenic Leptospira interrogans. Zoonotic parasites such as Taenia solium and Strongyloides stercoralis were predominantly present in wild bonobos, while Giardia lamblia was found only in bonobos in contact with humans, suggesting a possible exchange. One third of bonobos carried Oesophagostomum spp., particularly zoonotic O. stephanostomum and O. bifurcum-like species, as well as other uncharacterized Nematoda. Trypanosoma theileri has been identified in semicaptive bonobos. Pathogens typically known to be transmitted sexually were not identified. We present here the results of a reasonably-sized screening study detecting DNA/RNA sequence evidence of potentially pathogenic viruses and microorganisms in bonobo based on a noninvasive sampling method (feces) and focused PCR diagnostics.


Bacterial Infections in Humans and Nonhuman Primates from Africa: Expanding the Knowledge.

  • Hacène Medkour‎ et al.
  • The Yale journal of biology and medicine‎
  • 2021‎

The close phylogenetic relationship between humans and other primates creates exceptionally high potential for pathogen exchange. The surveillance of pathogens in primates plays an important role in anticipating possible outbreaks. In this study, we conducted a molecular investigation of pathogenic bacteria in feces from African nonhuman primates (NHPs). We also investigated the pathogens shared by the human population and gorillas living in the same territory in the Republic of Congo. In total, 93% of NHPs (n=176) and 95% (n=38) of humans were found to carry at least one bacterium. Non-pallidum Treponema spp. (including T. succinifaciens, T. berlinense, and several potential new species) were recovered from stools of 70% of great apes, 88% of monkeys, and 79% of humans. Non-tuberculosis Mycobacterium spp. were also common in almost all NHP species as well as in humans. In addition, Acinetobacter spp., members of the primate gut microbiota, were mainly prevalent in human and gorilla. Pathogenic Leptospira spp. were highly present in humans (82%) and gorillas (66%) stool samples in Congo, but were absent in the other NHPs, therefore suggesting a possible gorillas-humans exchange. Particular attention will be necessary for enteropathogenic bacteria detected in humans such as Helicobacter pylori, Salmonella spp. (including S. typhi/paratyphi), Staphyloccocus aureus, and Tropheryma whipplei, some of which were also present in gorillas in the same territory (S. aureus and T. whipplei). This study enhances our knowledge of pathogenic bacteria that threaten African NHPs and humans by using a non-invasive sampling technique. Contact between humans and NHPs results in an exchange of pathogens. Ongoing surveillance, prevention, and treatment strategies alone will limit the spread of these infectious agents.


Adenovirus Infections in African Humans and Wild Non-Human Primates: Great Diversity and Cross-Species Transmission.

  • Hacène Medkour‎ et al.
  • Viruses‎
  • 2020‎

Non-human primates (NHPs) are known hosts for adenoviruses (AdVs), so there is the possibility of the zoonotic or cross-species transmission of AdVs. As with humans, AdV infections in animals can cause diseases that range from asymptomatic to fatal. The aim of this study was to investigate the occurrence and diversity of AdVs in: (i) fecal samples of apes and monkeys from different African countries (Republic of Congo, Senegal, Djibouti and Algeria), (ii) stool of humans living near gorillas in the Republic of Congo, in order to explore the potential zoonotic risks. Samples were screened by real-time and standard PCRs, followed by the sequencing of the partial DNA polymerase gene in order to identify the AdV species. The prevalence was 3.3 folds higher in NHPs than in humans. More than 1/3 (35.8%) of the NHPs and 1/10 (10.5%) of the humans excreted AdVs in their feces. The positive rate was high in great apes (46%), with a maximum of 54.2% in chimpanzees (Pan troglodytes) and 35.9% in gorillas (Gorilla gorilla), followed by monkeys (25.6%), with 27.5% in Barbary macaques (Macaca sylvanus) and 23.1% in baboons (seven Papio papio and six Papio hamadryas). No green monkeys (Chlorocebus sabaeus) were found to be positive for AdVs. The AdVs detected in NHPs were members of Human mastadenovirus E (HAdV-E), HAdV-C or HAdV-B, and those in the humans belonged to HAdV-C or HAdV-D. HAdV-C members were detected in both gorillas and humans, with evidence of zoonotic transmission since phylogenetic analysis revealed that gorilla AdVs belonging to HAdV-C were genetically identical to strains detected in humans who had been living around gorillas, and, inversely, a HAdV-C member HAdV type was detected in gorillas. This confirms the gorilla-to-human transmission of adenovirus. which has been reported previously. In addition, HAdV-E members, the most often detected here, are widely distributed among NHP species regardless of their origin, i.e., HAdV-E members seem to lack host specificity. Virus isolation was successful from a human sample and the strain of the Mbo024 genome, of 35 kb, that was identified as belonging to HAdV-D, exhibited close identity to HAdV-D members for all genes. This study provides information on the AdVs that infect African NHPs and the human populations living nearby, with an evident zoonotic transmission. It is likely that AdVs crossed the species barrier between different NHP species (especially HAdV-E members), between NHPs and humans (especially HAdV-C), but also between humans, NHPs and other animal species.


High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol.

  • Bédis Dridi‎ et al.
  • PloS one‎
  • 2009‎

The low and variable prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae DNA in human stool contrasts with the paramount role of these methanogenic Archaea in digestion processes. We hypothesized that this contrast is a consequence of the inefficiencies of current protocols for archaeon DNA extraction. We developed a new protocol for the extraction and PCR-based detection of M. smithii and M. stadtmanae DNA in human stool.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: