Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 262 papers

Bioinformatics Analysis of MAPKKK Family Genes in Medicago truncatula.

  • Wei Li‎ et al.
  • Genes‎
  • 2016‎

Mitogen-activated protein kinase kinase kinase (MAPKKK) is a component of the MAPK cascade pathway that plays an important role in plant growth, development, and response to abiotic stress, the functions of which have been well characterized in several plant species, such as Arabidopsis, rice, and maize. In this study, we performed genome-wide and systemic bioinformatics analysis of MAPKKK family genes in Medicago truncatula. In total, there were 73 MAPKKK family members identified by search of homologs, and they were classified into three subfamilies, MEKK, ZIK, and RAF. Based on the genomic duplication function, 72 MtMAPKKK genes were located throughout all chromosomes, but they cluster in different chromosomes. Using microarray data and high-throughput sequencing-data, we assessed their expression profiles in growth and development processes; these results provided evidence for exploring their important functions in developmental regulation, especially in the nodulation process. Furthermore, we investigated their expression in abiotic stresses by RNA-seq, which confirmed their critical roles in signal transduction and regulation processes under stress. In summary, our genome-wide, systemic characterization and expressional analysis of MtMAPKKK genes will provide insights that will be useful for characterizing the molecular functions of these genes in M. truncatula.


Structural insights into the TRIM family of ubiquitin E3 ligases.

  • Yang Li‎ et al.
  • Cell research‎
  • 2014‎

No abstract available


Sequence and expression analysis of the AMT gene family in poplar.

  • Xiangyu Wu‎ et al.
  • Frontiers in plant science‎
  • 2015‎

Ammonium transporters (AMTs) are plasma membrane proteins that exclusively transport ammonium/ammonia. These proteins are encoded by an ancient gene family with many members. The molecular characteristics and evolutionary history of AMTs in woody plants are still poorly understood. We comprehensively evaluated the AMT gene family in the latest release of the Populus trichocarpa genome (version 3.0; Phytozome 9.0), and identified 16 AMT genes. These genes formed four clusters; AMT1 (7 genes), AMT2 (2 genes), AMT3 (2 genes), and AMT4 (5 genes). Evolutionary analyses suggested that the Populus AMT gene family has expanded via whole-genome duplication events. Among the 16 AMT genes, 15 genes are located on 11 chromosomes of Populus. Expression analyses showed that 14 AMT genes were vegetative organs expressed; AMT1;1/1;3/1;6/3;2 and AMT1;1/1;2/2;2/3;1 had high transcript accumulation level in the leaves and roots, respectively and strongly changes under the nitrogen-dependent experiments. The results imply the functional roles of AMT genes in ammonium absorption in poplar.


Genome-wide characterization and expression analysis of soybean trihelix gene family.

  • Wei Liu‎ et al.
  • PeerJ‎
  • 2020‎

Trihelix transcription factors play multiple roles in plant growth, development and various stress responses. In this study, we identified 71 trihelix family genes in the soybean genome. These trihelix genes were located at 19 out of 20 soybean chromosomes unevenly and were classified into six distinct subfamilies: GT-1, GT-2, GTγ, SIP1, SH4 and GTδ. The gene structure and conserved functional domain of these trihelix genes were similar in the same subfamily but diverged between different subfamilies. Thirteen segmental duplicated gene pairs were identified and all of them experienced a strong purifying selective pressure during evolution. Various stress-responsive cis-elements presented in the promoters of soybean trihelix genes, suggesting that the trihelix genes might respond to the environmental stresses in soybean. The expression analysis suggests that trihelix genes are involved in diverse functions during soybean development, flood or salinity tolerance, and plant immunity. Our results provide genomic information of the soybean trihelix genes and a basis for further characterizing their roles in response to environmental stresses.


NAC Family Transcription Factors in Tobacco and Their Potential Role in Regulating Leaf Senescence.

  • Wei Li‎ et al.
  • Frontiers in plant science‎
  • 2018‎

The NAC family is one of the largest families of plant-specific transcription factors (TFs) and NAC proteins play important regulatory roles in a variety of developmental and stress response processes in plants. Members of the NAC family TFs have been shown to be important regulators of leaf senescence in a number of plant species. Here we report the identification of the NAC family in tobacco (Nicotiana tabacum) and characterization of the potential role of some of the tobacco NAC TFs in regulating leaf senescence. A total of 154 NAC genes (NtNACs) were identified and clustered together with the Arabidopsis NAC family into fifteen groups (a-o). Transcriptome data analysis followed by qRT-PCR validation showed that the majority of the senescence-up-regulated NtNACs fall into subgroups NAC-b and f. A number of known senescence regulators from Arabidopsis also belong to these two subgroups. Among these senescence-up-regulated NtNACs, NtNAC080, a close homolog of AtNAP, is a positive regulator of leaf senescence. Overexpression of NtNAC080 caused early senescence in Arabidopsis leaves and NtNAC080 mutation induced by Cas9/gRNA in tobacco led to delayed leaf senescence.


Preimplantation genetic testing for a family with usher syndrome through targeted sequencing and haplotype analysis.

  • Haining Luo‎ et al.
  • BMC medical genomics‎
  • 2019‎

Preimplantation genetic testing for monogenic defects (PGT-M) has been available in clinical practice. This study aimed to validate the applicability of targeted capture sequencing in developing personalized PGT-M assay.


AKAP2 identified as a novel gene mutated in a Chinese family with adolescent idiopathic scoliosis.

  • Wei Li‎ et al.
  • Journal of medical genetics‎
  • 2016‎

Adolescent idiopathic scoliosis exhibits high heritability and is one of the most common spinal deformities found in adolescent populations. However, little is known about the disease-causing genes in families with adolescent idiopathic scoliosis exhibiting Mendelian inheritance.


Characterization and expression analysis of wall-associated kinase (WAK) and WAK-like family in cotton.

  • Zhiqiang Zhang‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

The wall-associated kinases (WAKs) and WAK-like kinases (WAKLs) form a group of receptor-like kinases (RLKs) with extracellular domains tightly linked to the cell wall. The WAKs/WAKLs have been known to be involved in plant growth, development, and stress responses. However, the functions of WAKs/WAKLs are less well known in cotton. In this study, 58, 66, and 99 WAK/WAKL genes were identified in Gossypium arboreum, G. raimondii, and G. hirsutum, respectively. Phylogenetic analysis showed they were classified into five groups, with two groups specific to cotton. Collinearity analysis revealed that segmental and tandem duplications resulted in expansion of the WAK/WAKL gene family in cotton. Moreover, the Ka/Ks ratios indicated this family was exposed to purifying selection pressure during evolution. The structures of the GhWAK/WAKL genes and encoded proteins suggested the functions of WAKs/WAKLs in cotton were conserved. Transient expression of four WAK/WAKL-GFP fusion constructs in Arabidopsis protoplasts indicated that they were localized on the plasma membrane. The cis-elements in the GhWAK/WAKL promoters were responsive to multiple phytohormones and abiotic stresses. Expression profiling showed that GhWAK/WAKL genes were induced by various abiotic stresses. This study provides insights into the evolution of WAK/WAKL genes and presents fundamental information for further analysis in cotton.


A recurrent deletion mutation in OPA1 causes autosomal dominant optic atrophy in a Chinese family.

  • Liping Zhang‎ et al.
  • Scientific reports‎
  • 2014‎

Autosomal dominant optic atrophy (ADOA) is the most frequent form of hereditary optic neuropathy and occurs due to the degeneration of the retinal ganglion cells. To identify the genetic defect in a family with putative ADOA, we performed capture next generation sequencing (CNGS) to screen known retinal disease genes. However, six exons failed to be sequenced by CNGS in optic atrophy 1 gene (OPA1). Sequencing of those exons identified a 4 bp deletion mutation (c.2983-1_2985del) in OPA1. Furthermore, we sequenced the transcripts of OPA1 from the patient skin fibroblasts and found there is six-nucleotide deletion (c.2984-c.2989, AGAAAG). Quantitative-PCR and Western blotting showed that OPA1 mRNA and its protein expression have no obvious difference between patient skin fibroblast and control. The analysis of protein structure by molecular modeling suggests that the mutation may change the structure of OPA1 by formation of an alpha helix protruding into an existing pocket. Taken together, we identified an OPA1 mutation in a family with ADOA by filling the missing CNGS data. We also showed that this mutation affects the structural intactness of OPA1. It provides molecular insights for clinical genetic diagnosis and treatment of optic atrophy.


Screening of Graves' disease susceptibility genes by whole exome sequencing in a three-generation family.

  • Zhuoqing Hu‎ et al.
  • BMC medical genomics‎
  • 2021‎

Graves' disease(GD) has a tendency for familial aggregation, but it is uncommon to occur in more than two generations. However, little is known about susceptibility genes for GD in the three-generation family.


Pan-cancer analysis of SERPINE family genes as biomarkers of cancer prognosis and response to therapy.

  • Yating Liu‎ et al.
  • Frontiers in molecular biosciences‎
  • 2023‎

Background: Serine protease inhibitor E (SERPINE) family genes participate in the tumor growth, cancer cell survival and metastasis. However, the SERPINE family members role in the prognosis and their clinical therapeutic potentials in various human cancer types have not been elaborately explored. Methods: We preliminarily analyzed expression levels and prognostic values of SERPINE family genes, and investigated the correlation between SERPINEs expression and tumor microenvironment (TME), Stemness score, clinical characteristic, immune infiltration, tumor mutational burden (TMB), immune subtype, and drug sensitivity in pan-cancer, which based on updated public databases and integrated some bioinformatics analysis methods. In addition, we conducted the enrichment analysis of SERPINEs from DAVID and KOBAS databases. Results: SERPINE1, SERPINE2, and SERPINE3 expression were upregulated in nine cancers, twelve cancers, and six cancers, respectively. The expression of SERPINE family genes was associated with the prognosis in several cancers from The Cancer Genome Atlas (TCGA). Furthermore, SERPINE family genes expression also had a significant relation to stromal and immune scores, and RNA stemness score and DNA stemness score in pan-cancer. SERPINE1 and SERPINE2 expression significantly increased in tumor advanced stage in colon adenocarcinoma (COAD). Results showed that SERPINE1 and SERPINE2 expression were negatively related with B cells and Monocytes, respectively. SERPINE2 expression had a significantly positive relation with B cells and Macrophages. In terms of TMB, SERPINE1, SERPINE2, and SERPINE3 were found to associated with TMB in seven cancers, fourteen cancers, and four cancers, respectively. Moreover, all SERPINE gene family members were significantly correlated with immune subtypes. SERPINE1 expression had a significantly positive or negative correlation with drug sensitivity. Conclusion: The study indicated the great potential of SERPINE family genes as biomarkers for prognosis and provided valuable strategies for further investigation of SERPINE family genes as potential targets in cancer.


Genome-Wide Identification, Classification, and Expression Analysis of the Hsf Gene Family in Carnation (Dianthus caryophyllus).

  • Wei Li‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Heat shock transcription factors (Hsfs) are a class of important transcription factors (TFs) which play crucial roles in the protection of plants from damages caused by various abiotic stresses. The present study aimed to characterize the Hsf genes in carnation (Dianthus caryophyllus), which is one of the four largest cut flowers worldwide. In this study, a total of 17 non-redundant Hsf genes were identified from the D. caryophyllus genome. Specifically, the gene structure and motifs of each DcaHsf were comprehensively analyzed. Phylogenetic analysis of the DcaHsf family distinctly separated nine class A, seven class B, and one class C Hsf genes. Additionally, promoter analysis indicated that the DcaHsf promoters included various cis-acting elements that were related to stress, hormones, as well as development processes. In addition, cis-elements, such as STRE, MYB, and ABRE binding sites, were identified in the promoters of most DcaHsf genes. According to qRT-PCR data, the expression of DcaHsfs varied in eight tissues and six flowering stages and among different DcaHsfs, even in the same class. Moreover, DcaHsf-A1, A2a, A9a, B2a, B3a revealed their putative involvement in the early flowering stages. The time-course expression profile of DcaHsf during stress responses illustrated that all the DcaHsfs were heat- and drought-responsive, and almost all DcaHsfs were down-regulated by cold, salt, and abscisic acid (ABA) stress. Meanwhile, DcaHsf-A3, A7, A9a, A9b, B3a were primarily up-regulated at an early stage in response to salicylic acid (SA). This study provides an overview of the Hsf gene family in D. caryophyllus and a basis for the breeding of stress-resistant carnation.


Genome-wide identification and transcriptional expression analysis of superoxide dismutase (SOD) family in wheat (Triticum aestivum).

  • Wenqiang Jiang‎ et al.
  • PeerJ‎
  • 2019‎

Superoxide dismutases (SODs) are a family of key antioxidant enzymes that play a crucial role in plant growth and development. Previously, this gene family has been investigated in Arabidopsis and rice. In the present study, a genome-wide analysis of the SOD gene family in wheat were performed. Twenty-six SOD genes were identified from the whole genome of wheat, including 17 Cu/Zn-SODs, six Fe-SODs, and three Mn-SODs. The chromosomal location mapping analysis indicated that these three types of SOD genes were only distributed on 2, 4, and 7 chromosomes, respectively. Phylogenetic analyses of wheat SODs and several other species revealed that these SOD proteins can be assigned to two major categories. SOD1 mainly comprises of Cu/Zn-SODs, and SOD2 mainly comprises of Fe-SODs and Mn-SODs. Gene structure and motif analyses indicated that most of the SOD genes showed a relatively conserved exon/intron arrangement and motif composition. Analyses of transcriptional data indicated that most of the wheat SOD genes were expressed in almost all of the examined tissues and had important functions in abiotic stress resistance. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) analysis was used to reveal the regulating roles of wheat SOD gene family in response to NaCl, mannitol, and polyethylene glycol stresses. qRT-PCR showed that eight randomly selected genes with relatively high expression levels responded to all three stresses based on released transcriptome data. However, their degree of response and response patterns were different. Interestingly, among these genes, TaSOD1.7, TaSOD1.9, TaSOD2.1, and TaSOD2.3 feature research value owing to their remarkable expression-fold change in leaves or roots under different stresses. Overall, our results provide a basis of further functional research on the SOD gene family in wheat and facilitate their potential use for applications in the genetic improvement on wheat in drought and salt stress environments.


A Novel Mutation of GARS in a Chinese Family With Distal Hereditary Motor Neuropathy Type V.

  • Xueying Yu‎ et al.
  • Frontiers in neurology‎
  • 2018‎

Glycyl-tRNA synthetase (GARS) gene mutations have been reported to be associated with Charcot-Marie-Tooth disease 2D and distal hereditary motor neuropathy type V (dHMN-V). In this study, we report a novel GARS mutation in a Chinese family with dHMN-V. Clinical, electromyogram, genetic, and functional data were explored. The proband was an 11-year-old girl presented with progressive distal limb muscle weakness and atrophy due to peripheral motor neuropathy for 1 year. Another five members from three successive generations of the family showed similar symptoms during their first to second decades and demonstrated an autosomal dominant inheritance. The results of genetic testing revealed a novel c.383T>G mutation in the GARS gene in the affected individuals, showing apparent genetic cosegregation. Further bioinformatic analyses showed that the c.383T > G mutation resulted in L128R alteration in the second functional protein domain, and the mutation site was well conserved among different species. In silico analysis predicted that this mutation probably affected protein function. In vitro, this GARS mutation led to a different protein localization pattern than that of the wild-type enzyme. The study found a novel GARS mutation of c.383T > G causing dHMN-V with subcellular localization abnormity in a genetic cosegregation family. These findings broaden the mutational spectrum of GARS.


Novel HMGCS2 pathogenic variants in a Chinese family with mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency.

  • Pengfei Zhang‎ et al.
  • Pediatric investigation‎
  • 2019‎

Mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase deficiency is a rare and underdiagnosed disorder with fewer than 30 patients reported worldwide. The application of whole-exome sequencing in patients could improve our understanding of this disorder.


A novel KCNQ4 gene variant (c.857A>G; p.Tyr286Cys) in an extended family with non‑syndromic deafness 2A.

  • Qiong Li‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Deafness is one of the most common sensory disorders found in humans; notably, >60% of all cases of deafness have been attributed to genetic factors. Variants in potassium voltage‑gated channel subfamily Q member 4 (KCNQ4) are etiologically linked to a type of progressive hearing loss, deafness non‑syndromic autosomal dominant 2A (DFNA2A). In the present study, whole‑exome sequencing (WES) was performed on three members of a five‑generation Chinese family with 46 members with hearing loss. Pure tone audiometry and Sanger sequencing were performed for 11 family members to determine whether the novel variant in the KCNQ4 gene was segregated with the affected family members. In addition, evolutionary conservation analysis and computational tertiary structure protein prediction of the wild‑type KCNQ4 protein and its variant were performed. The family exhibited autosomal dominant, progressive, post‑lingual, non‑syndromic sensorineural hearing loss. A novel co‑segregating heterozygous missense variant (c.857A>G; p.Tyr286Cys) in the glycine‑tyrosine‑glycine signature sequence in the pore region of the KCNQ4 channel was identified. This variant was predicted to result in a tyrosine‑to‑cysteine substitution at position 286 in the KCNQ4 protein. The tyrosine at position 286 is well conserved across different species. The substitution of tyrosine with cysteine would affect the structure of the pore region, resulting in the loss of channel function. The KCNQ4 gene is one of the most common mutated genes observed in patients with autosomal dominant, non‑syndromic hearing loss. Taken together, for the family analyzed in the present study, performing WES in conjunction with Sanger sequencing has led to the detection of a novel, potentially causative variant (c.857 A>G; p.Tyr286Cys) in exon 6 of the KCNQ4 gene. The present study has added to the number of pathogenic variants observed in the KCNQ4 gene, and the findings may prove to be useful for both the diagnosis of DFNA2A and in the design of early interventional therapies.


Genome-wide identification of the B3 transcription factor family in pepper (Capsicum annuum) and expression patterns during fruit ripening.

  • Tao Wang‎ et al.
  • Scientific reports‎
  • 2024‎

In plants, B3 transcription factors play important roles in a variety of aspects of their growth and development. While the B3 transcription factor has been extensively identified and studied in numerous species, there is limited knowledge regarding its B3 superfamily in pepper. Through the utilization of genome-wide sequence analysis, we identified a total of 106 B3 genes from pepper (Capsicum annuum), they are categorized into four subfamilies: RAV, ARF, LAV, and REM. Chromosome distribution, genetic structure, motif, and cis-acting element of the pepper B3 protein were analyzed. Conserved gene structure and motifs outside the B3 domain provided strong evidence for phylogenetic relationships, allowing potential functions to be deduced by comparison with homologous genes from Arabidopsis. According to the high-throughput transcriptome sequencing analysis, expression patterns differ during different phases of fruit development in the majority of the 106 B3 pepper genes. By using qRT-PCR analysis, similar expression patterns in fruits from various time periods were discovered. In addition, further analysis of the CaRAV4 gene showed that its expression level decreased with fruit ripening and located in the nucleus. B3 transcription factors have been genome-wide characterized in a variety of crops, but the present study is the first genome-wide analysis of the B3 superfamily in pepper. More importantly, although B3 transcription factors play key regulatory roles in fruit development, it is uncertain whether B3 transcription factors are involved in the regulation of the fruit development and ripening process in pepper and their specific regulatory mechanisms because the molecular mechanisms of the process have not been fully explained. The results of the study provide a foundation and new insights into the potential regulatory functions and molecular mechanisms of B3 genes in the development and ripening process of pepper fruits, and provide a solid theoretical foundation for the enhancement of the quality of peppers and their selection and breeding of high-yield varieties.


Genome-Wide Identification and Characterization of the Aquaporin Gene Family and Transcriptional Responses to Boron Deficiency in Brassica napus.

  • Dan Yuan‎ et al.
  • Frontiers in plant science‎
  • 2017‎

Aquaporins (AQPs) are an abundant protein family and play important roles to facilitate small neutral molecule transport across membranes. Oilseed rape (Brassica napus L.) is an important oil crop in China and elsewhere in the world, and is very sensitive to low boron (B) stress. Several AQP family genes have been reported to be involved in B transport across plasma membranes in plants. In this study, a total of 121 full-length AQPs were identified and characterized in B. napus (AC genome), and could be classified into four sub-families, including 43 PIPs (plasma membrane intrinsic proteins), 35 TIPs (tonoplast intrinsic proteins), 32 NIPs (NOD26-like intrinsic proteins), and 11 SIPs (small basic intrinsic proteins). The gene characteristics of BnaAQPs were similar to those of BraAQPs (A genome) and BolAQPs (C genome) including the composition of each sub-family, gene structure, and substrate selectivity filters. The BnaNIP was the most complex AQP sub-family, reflecting the composition of substrate selectivity filter structures which affect the permeation of solution molecules. In this study, the seedlings of both B-efficient (QY10) and B-inefficient (W10) cultivars were treated with two boron (B) levels: deficient (0.25 μM B) and sufficient (25 μM B). The transcription of AQP genes in root (R), juvenile leaf (JL), and old leaf (OL) tissues of both cultivars was investigated under B deficient and sufficient conditions. Transcription of most BnaPIPs and BnaTIPs was significantly increased compared with other BnaAQPs in all the three tissues, especially in the roots, of both B-efficient and B-inefficient cultivars under both B conditions. With B deprivation, the expression of the majority of the BnaPIPs and BnaTIPs was down-regulated in the roots. However, the BnaNIPs were up-regulated. In addition, the BnaCnn_random.PIP1;4b, BnaPIP2;4s, BnaC04.TIP4;1a, BnaAnn_random.TIP1;1b, and BnaNIP5;1s (except for BnaA07.NIP5;1c and BnaC06.NIP5;1c) exhibited obvious differences at low B between B-efficient and B-inefficient cultivars. These results will help us to understand boron homeostasis in B. napus.


DEAR4, a Member of DREB/CBF Family, Positively Regulates Leaf Senescence and Response to Multiple Stressors in Arabidopsis thaliana.

  • Zenglin Zhang‎ et al.
  • Frontiers in plant science‎
  • 2020‎

Leaf senescence is a programmed developmental process regulated by various endogenous and exogenous factors. Here we report the characterization of the senescence-regulating role of DEAR4 (AT4G36900) from the DREB1/CBF (dehydration-responsive element binding protein 1/C-repeat binding factor) family in Arabidopsis. The expression of DEAR4 is associated with leaf senescence and can be induced by ABA, JA, darkness, drought and salt stress. Transgenic plants over-expressing DEAR4 showed a dramatically enhanced leaf senescence phenotype under normal and dark conditions while the dear4 knock-down mutant displayed delayed senescence. DEAR4 over-expressing plants showed decreased seed germination rate under ABA and salt stress conditions as well as decreased drought tolerance, indicating that DEAR4 was involved in both senescence and stress response processes. Furthermore, we found that DEAR4 protein displayed transcriptional repressor activities in yeast cells. DEAR4 could directly repress the expression of a subset of COLD-REGULATED (COR) and RESPONSIVE TO DEHYDRATION (RD) genes which have been shown to be involved in leaf longevity and stress response. Also we found that DERA4 could induce the production of Reactive oxygen species (ROS), the common signal of senescence and stress responses, which gives us the clue that DEAR4 may play an integrative role in senescence and stress response via regulating ROS production.


Genome-Wide Identification and Comparative Analysis of the 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR) Gene Family in Gossypium.

  • Wei Liu‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Terpenes are the largest and most diverse class of secondary metabolites in plants and play a very important role in plant adaptation to environment. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a rate-limiting enzyme in the process of terpene biosynthesis in the cytosol. Previous study found the HMGR genes underwent gene expansion in Gossypium raimondii, but the characteristics and evolution of the HMGR gene family in Gossypium genus are unclear. In this study, genome-wide identification and comparative study of HMGR gene family were carried out in three Gossypium species with genome sequences, i.e., G. raimondii, Gossypium arboreum, and Gossypium hirsutum. In total, nine, nine and 18 HMGR genes were identified in G. raimondii, G. arboreum, and G. hirsutum, respectively. The results indicated that the HMGR genes underwent gene expansion and a unique gene cluster containing four HMGR genes was found in all the three Gossypium species. The phylogenetic analysis suggested that the expansion of HMGR genes had occurred in their common ancestor. There was a pseudogene that had a 10-bp deletion resulting in a frameshift mutation and could not be translated into functional proteins in G. arboreum and the A-subgenome of G. hirsutum. The expression profiles of the two pseudogenes showed that they had tissue-specific expression. Additionally, the expression pattern of the pseudogene in the A-subgenome of G. hirsutum was similar to its paralogous gene in the D-subgenome of G. hirsutum. Our results provide useful information for understanding cytosolic terpene biosynthesis in Gossypium species.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: