Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 79 papers

The leptin gene family and colorectal cancer: interaction with smoking behavior and family history of cancer.

  • Li Liu‎ et al.
  • PloS one‎
  • 2013‎

Pathologic condition associated with metabolic syndrome traits seems to increase the risk of colorectal cancer. One mechanism underlying this relationship may involve the growth-promoting effects of the circulation hormones associated with obesity and insulin resistance, such as leptin.


The impact of genotype calling errors on family-based studies.

  • Qi Yan‎ et al.
  • Scientific reports‎
  • 2016‎

Family-based sequencing studies have unique advantages in enriching rare variants, controlling population stratification, and improving genotype calling. Standard genotype calling algorithms are less likely to call rare variants correctly, often mistakenly calling heterozygotes as reference homozygotes. The consequences of such non-random errors on association tests for rare variants are unclear, particularly in transmission-based tests. In this study, we investigated the impact of genotyping errors on rare variant association tests of family-based sequence data. We performed a comprehensive analysis to study how genotype calling errors affect type I error and statistical power of transmission-based association tests using a variety of realistic parameters in family-based sequencing studies. In simulation studies, we found that biased genotype calling errors yielded not only an inflation of type I error but also a power loss of association tests. We further confirmed our observation using exome sequence data from an autism project. We concluded that non-symmetric genotype calling errors need careful consideration in the analysis of family-based sequence data and we provided practical guidance on ameliorating the test bias.


A computational method for genotype calling in family-based sequencing data.

  • Lun-Ching Chang‎ et al.
  • BMC bioinformatics‎
  • 2016‎

As sequencing technologies can help researchers detect common and rare variants across the human genome in many individuals, it is known that jointly calling genotypes across multiple individuals based on linkage disequilibrium (LD) can facilitate the analysis of low to modest coverage sequence data. However, genotype-calling methods for family-based sequence data, particularly for complex families beyond parent-offspring trios, are still lacking.


Leveraging Identity-by-Descent for Accurate Genotype Inference in Family Sequencing Data.

  • Bingshan Li‎ et al.
  • PLoS genetics‎
  • 2015‎

Sequencing family DNA samples provides an attractive alternative to population based designs to identify rare variants associated with human disease due to the enrichment of causal variants in pedigrees. Previous studies showed that genotype calling accuracy can be improved by modeling family relatedness compared to standard calling algorithms. Current family-based variant calling methods use sequencing data on single variants and ignore the identity-by-descent (IBD) sharing along the genome. In this study we describe a new computational framework to accurately estimate the IBD sharing from the sequencing data, and to utilize the inferred IBD among family members to jointly call genotypes in pedigrees. Through simulations and application to real data, we showed that IBD can be reliably estimated across the genome, even at very low coverage (e.g. 2X), and genotype accuracy can be dramatically improved. Moreover, the improvement is more pronounced for variants with low frequencies, especially at low to intermediate coverage (e.g. 10X to 20X), making our approach effective in studying rare variants in cost-effective whole genome sequencing in pedigrees. We hope that our tool is useful to the research community for identifying rare variants for human disease through family-based sequencing.


A novel CRX frameshift mutation causing cone-rod dystrophy in a Chinese family: A case report.

  • Lihua Wang‎ et al.
  • Medicine‎
  • 2018‎

Cone-rod dystrophy (CORD) is an inherited, progressive retinal disorder with genetic and phenotypic heterogeneity. Here, we aimed to identify the pathogenic mutation in affected individuals in a Chinese family with autosomal dominant cone-rod dystrophy (adCORD).


MDM4 regulation by the let-7 miRNA family in the DNA damage response of glioma cells.

  • Chen Xie‎ et al.
  • FEBS letters‎
  • 2015‎

Despite extensive investigation into the role of let-7 miRNAs in pathological tumor processes, their involvement in the DNA damage response remains unclear. Here we show that most let-7 family members down-regulate MDM4 expression via binding to MDM4 mRNA at a conserved DNA sequence. Expression of exogenous let-7 miRNA mimics decreased MDM4 protein but not mRNA levels. Several DNA damage reagents increased let-7 expression, thereby decreasing MDM4 protein levels in glioma cells. Inhibition of endogenous let-7 with antisense RNAs rescued MDM4 protein levels with or without MG132, a proteasome-dependent degradation inhibitor. An MDM4 mutation identified in a glioma patient was associated with loss of the putative MDM4 target site. Therefore, let-7 binding to MDM4 is implicated in the DNA damage response.


GhCKX14 responding to drought stress by modulating antioxi-dative enzyme activity in Gossypium hirsutum compared to CKX family genes.

  • Tengyu Li‎ et al.
  • BMC plant biology‎
  • 2023‎

Cytokinin oxidase/dehydrogenase (CKX) plays a vital role in response to abiotic stress through modulating the antioxidant enzyme activities. Nevertheless, the biological function of the CKX gene family has yet to be reported in cotton.


A novel gross deletion and breakpoint junction sequence analysis of ATP7B in a Chinese family with Wilson disease using next‑generation sequencing and Sanger sequencing.

  • Wei-Liang Liu‎ et al.
  • Molecular medicine reports‎
  • 2020‎

Wilson disease (WD) is a rare autosomal recessive genetic disorder that causes abnormal copper metabolism, resulting in pathological accumulation of copper in the liver, brain and other organs. Mutations in the ATPase copper transporter 7B (ATP7B) gene, which encodes a membrane P‑type adenosine triphosphatase, have been identified as being responsible for WD. The present study analyzed clinical data and collected DNA samples from a pediatric patient with WD and her healthy parents. Mutation screening for ATP7B was performed using direct sequencing, multiplex ligation‑dependent probe amplification(MLPA), next‑generation sequencing (NGS) and Sanger sequencing of the breakpoint junction sequence. The patient (age, 2.7 years) presented with early‑onset hepatic disease. The present study identified compound heterozygous mutations of ATP7B, including a heterozygous mutation (p.Arg1,041Trp) and a novel heterozygous gross deletion of a 57,771 bp fragment (chr13: 52490972‑52548742) (GRCh37) from partial exon2‑ exon21 to external ATP7B sequence (15.833bp) in the patient. Analysis of the family members of the patient showed that the missense mutation and the gross deletion mutation were inherited from her mother and father, respectively. Microhomology and inverted repeat sequences, which may mediate the deletion mutation, were identified through sequence analysis on both sides of the breakpoints of this deletion. The present study provided additional information on the genotypic spectrum of the ATP7B gene, particularly with regard to early onset hepatic disease, as observed in the present patient with WD. The identification of the precise breakpoint junction sequence warrants further investigation of DNA break and recombination mechanisms. In detecting precise deletions, the NGS associated with Sanger sequencing of breakpoint junction sequence have been found to have more advantages than MLPA.


Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF-β signaling pathways.

  • Wei Chen‎ et al.
  • Oncogenesis‎
  • 2018‎

Grainyhead-Like 2 (GRHL2) is an epithelial-specific transcription factor that regulates epithelial morphogenesis and differentiation. Prior studies suggested inverse regulation between GRHL2 and TGF-β in epithelial plasticity and potential carcinogenesis. Here, we report the role of GRHL2 in oral carcinogenesis in vivo using a novel Grhl2 knockout (KO) mouse model and the underlying mechanism involving its functional interaction with TGF-β signaling. We developed epithelial-specific Grhl2 conditional KO mice by crossing Grhl2 floxed mice with those expressing CreER driven by the K14 promoter. After induction of Grhl2 KO, we confirmed the loss of GRHL2 and its target proteins, while Grhl2 KO strongly induced TGF-β signaling molecules. When exposed to 4-nitroquinoline 1-oxide (4-NQO), a strong chemical carcinogen, Grhl2 wild-type (WT) mice developed rampant oral tongue tumors, while Grhl2 KO mice completely abolished tumor development. In cultured oral squamous cell carcinoma (OSCC) cell lines, TGF-β signaling was notably induced by GRHL2 knockdown while being suppressed by GRHL2 overexpression. GRHL2 knockdown or KO in vitro and in vivo, respectively, led to loss of active p-Erk1/2 and p-JNK MAP kinase levels; moreover, ectopic overexpression of GRHL2 strongly induced the MAP kinase activation. Furthermore, the suppressive effect of GRHL2 on TGF-β signaling was diminished in cells exposed to Erk and JNK inhibitors. These data indicate that GRHL2 activates the Erk and JNK MAP kinases, which in turn suppresses the TGF -β signaling. This novel signaling represents an alternative pathway by which GRHL2 regulates carcinogenesis, and is distinct from the direct transcriptional regulation by GRHL2 binding at its target gene promoters, e.g., E-cadherin, hTERT, p63, and miR-200 family genes. Taken together, the current study provides the first genetic evidence to support the role of GRHL2 in carcinogenesis and the underlying novel mechanism that involves the functional interaction between GRHL2 and TGF-β signaling through the MAPK pathways.


hTERT peptide fragment GV1001 demonstrates radioprotective and antifibrotic effects through suppression of TGF‑β signaling.

  • Wei Chen‎ et al.
  • International journal of molecular medicine‎
  • 2018‎

GV1001 is a 16‑amino acid peptide derived from the human telomerase reverse transcriptase (hTERT) protein (616‑626; EARPALLTSRLRFIPK), which lies within the reverse transcriptase domain. Originally developed as an anticancer vaccine, GV1001 demonstrates diverse cellular effects, including anti‑inflammatory, tumor suppressive and antiviral effects. In the present study, the radioprotective and antifibrotic effects of GV1001 were demonstrated through suppressing transforming growth factor‑β (TGF‑β) signaling. Proliferating human keratinocytes underwent premature senescence upon exposure to ionizing radiation (IR), however, treatment of cells with GV1001 allowed the cells to proliferate and showed a reduction in senescent phenotype. GV1001 treatment notably increased the levels of Grainyhead‑like 2 and phosphorylated (p‑)Akt (Ser473), and reduced the activation of p53 and the level of p21/WAF1 in irradiated keratinocytes. It also markedly suppressed the level of TGF‑β signaling molecules, including p‑small mothers against decapentaplegic (Smad)2/3 and Smad4, and TGF‑β target genes, including zinc finger E‑box binding homeobox 1, fibronectin, N‑cadharin and Snail, in irradiated keratinocytes. Furthermore, GV1001 suppressed TGF‑β signaling in primary human fibroblasts and inhibited myofibroblast differentiation. Chromatin immunoprecipitation revealed that GV1001 suppressed the binding of Smad2 on the promoter regions of collagen type III α1 chain (Col3a1) and Col1a1. In a dermal fibrosis model in vivo, GV1001 treatment notably reduced the thickness of fibrotic lesions and the synthesis of Col3a1. These data indicated that GV1001 ameliorated the IR‑induced senescence phenotype and tissue fibrosis by inhibiting TGF‑β signaling and may have therapeutic effects on radiation‑induced tissue damage.


HDAC4 inhibition disrupts TET2 function in high-risk MDS and AML.

  • Feiteng Huang‎ et al.
  • Aging‎
  • 2020‎

Aberrant DNA methylation often silences transcription of tumor-suppressor genes and is considered a hallmark of myeloid neoplasms. Similarly, histone deacetylation represses transcription of genes responsible for cell differentiation/death. A previous clinical study suggested potential pharmacodynamic antagonism between histone deacetylase inhibitors (HDACi) and DNA hypomethylating agents (HMA). Herein, to determine such antagonism, we used MDS/AML lines and NHD13 transgenic mice, and demonstrated that treatment with the pan-HDACi suberoylanilide hydroxamic acid (SAHA) significantly decreased TET2 expression and global 5-hydroxymethylcytosine (5hmC) levels. Mechanistically, our RNAi screen revealed that HDAC4 was responsible for maintaining TET2 levels. Accordingly, HDAC4 knockout reduced expression levels of MTSS1, a known TET2 target, an event associated with decreased 5hmC enrichment on the MTSS1 enhancer. Retrospective analysis of GEO datasets demonstrated that lower HDAC4 levels predict worse prognosis for AML patients. In an MDS-L xenografted immunodeficient mouse model, vitamin C co-treatment prevented TET2 loss of activity seen following SAHA treatment. Accordingly, vitamin C co-treatment further reduced MDS-L cell engraftment relative to SAHA alone. In summary, our findings suggest that co-administration of a TET2 agonist with pan-HDACi treatment could effectively counter potential diminution in TET2 activity resulting from pan-HDACi treatment alone, providing a rationale for evaluating such combinations against high-risk MDS/AML.


Combination of disulfiram and Copper-Cysteamine nanoparticles induces mitochondria damage and promotes apoptosis in endometrial cancer.

  • Lijun Yang‎ et al.
  • Bioactive materials‎
  • 2024‎

Endometrial cancer (EC) stands as one of the most prevalent gynecological malignancies affecting women, with its incidence and disease-related mortality steadily on the rise. Disulfiram (DSF), an FDA-approved medication primarily used for treating alcohol addiction, has exhibited promising anti-tumor properties. Studies have revealed DSF's capacity for enhanced anti-tumor activity, particularly when combined with copper. The novel Copper-Cysteamine (CuCy) compound, Cu3Cl(SR)2 (R[bond, double bond]CH2CH2NH2), showcases photodynamic effects and demonstrates significant anti-tumor potential under various conditions, including exposure to ultraviolet light, X-ray, microwave, and ultrasound. This study delves into exploring the synergistic anti-tumor effects and underlying mechanisms by utilizing copper-cysteamine in conjunction with DSF against endometrial cancer. The investigation involved comprehensive analyses encompassing in vitro experiments utilizing Ishikawa cells, in vivo studies, and transcriptomic analyses. Remarkably, the combined administration of both compounds at a low dose of 0.5 μM exhibited pronounced efficacy in impeding tumor growth, inhibiting blood vessel formation, and stimulating cell apoptosis. Notably, experiments involving transplanted tumors in nude mice vividly demonstrated the significant in vivo anti-tumor effects of this combination treatment. Detailed examination through transmission electron microscopy unveiled compelling evidence of mitochondrial damage, cellular swelling, and rupture, indicative of apoptotic changes in morphology due to the combined treatment. Moreover, transcriptomic analysis unveiled substantial downregulation of mitochondrial-related genes at the molecular level, coupled with a significant hindrance in the DNA repair pathway. These findings strongly suggest that the combined application of CuCy and DSF induces mitochondrial impairment in Ishikawa cells, thereby fostering apoptosis and ultimately yielding potent anti-tumor effects.


Targeting miR-126 in inv(16) acute myeloid leukemia inhibits leukemia development and leukemia stem cell maintenance.

  • Lianjun Zhang‎ et al.
  • Nature communications‎
  • 2021‎

Acute myeloid leukemia (AML) harboring inv(16)(p13q22) expresses high levels of miR-126. Here we show that the CBFB-MYH11 (CM) fusion gene upregulates miR-126 expression through aberrant miR-126 transcription and perturbed miR-126 biogenesis via the HDAC8/RAN-XPO5-RCC1 axis. Aberrant miR-126 upregulation promotes survival of leukemia-initiating progenitors and is critical for initiating and maintaining CM-driven AML. We show that miR-126 enhances MYC activity through the SPRED1/PLK2-ERK-MYC axis. Notably, genetic deletion of miR-126 significantly reduces AML rate and extends survival in CM knock-in mice. Therapeutic depletion of miR-126 with an anti-miR-126 (miRisten) inhibits AML cell survival, reduces leukemia burden and leukemia stem cell (LSC) activity in inv(16) AML murine and xenograft models. The combination of miRisten with chemotherapy further enhances the anti-leukemia and anti-LSC activity. Overall, this study provides molecular insights for the mechanism and impact of miR-126 dysregulation in leukemogenesis and highlights the potential of miR-126 depletion as a therapeutic approach for inv(16) AML.


Selective Isolation of Bifidobacterium From Human Faeces Using Pangenomics, Metagenomics, and Enzymology.

  • Shuanghong Yang‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Bifidobacterium, an important genus for human health, is difficult to isolate. We applied metagenomics, pangenomics, and enzymology to determine the dominant glycoside hydrolase (GH) families of Bifidobacterium and designed selective medium for Bifidobacterium isolation. Pangenomics results showed that the GH13, GH3, GH42, and GH43 families were highly conserved in Bifidobacterium. Metagenomic analysis of GH families in human faecal samples was performed. The results indicated that Bifidobacterium contains core GHs for utilizing raffinose, D-trehalose anhydrous, D(+)-cellobiose, melibiose, lactulose, lactose, D(+)-sucrose, resistant starch, pullulan, xylan, and glucan. These carbohydrates as the main carbon sources were applied for selective media, which were more conducive to the growth of bifidobacteria. In the medium with lactose, raffinose and xylan as the main carbon sources, the ratio of cultivable bifidobacteria to cultivable microorganisms were 89.39% ± 2.50%, 71.45% ± 0.99%, and 53.95% ± 1.22%, respectively, whereas the ratio in the ordinary Gifu anaerobic medium was only 17.90% ± 0.58%. Furthermore, the species significantly (p < 0.05) varied among samples from different individuals. Results suggested that xylan might be a prebiotic that benefits host health, and it is feasible to screen and isolate bifidobacteria using the oligosaccharides corresponding to the specific GHs of bifidobacteria as the carbon sources of the selective media.


Development and evaluation of RT-qPCR assays for two neglected orthobunyaviruses: Oya virus and Ebinur Lake virus.

  • Siyuan Liu‎ et al.
  • Virus research‎
  • 2024‎

Oya virus (OYAV) and Ebinur lake virus (EBIV) belong to the genus Orthobunyavirus within the Peribunyaviridae family, and both are recognized as the novel virus with potential threat to the animal or public health. Given their potential to cause outbreaks and their detection in diverse samples across different regions, the need for a reliable and efficient molecular detection method for OYAV and EBIV becomes imperative.


Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM.

  • Dejuan Kong‎ et al.
  • PloS one‎
  • 2012‎

The emergence of castrate-resistant prostate cancer (CRPC) contributes to the high mortality of patients diagnosed with prostate cancer (PCa), which in part could be attributed to the existence and the emergence of cancer stem cells (CSCs). Recent studies have shown that deregulated expression of microRNAs (miRNAs) contributes to the initiation and progression of PCa. Among several known miRNAs, let-7 family appears to play a key role in the recurrence and progression of PCa by regulating CSCs; however, the mechanism by which let-7 family contributes to PCa aggressiveness is unclear. Enhancer of Zeste homolog 2 (EZH2), a putative target of let-7 family, was demonstrated to control stem cell function. In this study, we found loss of let-7 family with corresponding over-expression of EZH2 in human PCa tissue specimens, especially in higher Gleason grade tumors. Overexpression of let-7 by transfection of let-7 precursors decreased EZH2 expression and repressed clonogenic ability and sphere-forming capacity of PCa cells, which was consistent with inhibition of EZH2 3'UTR luciferase activity. We also found that the treatment of PCa cells with BR-DIM (formulated DIM: 3,3'-diindolylmethane by Bio Response, Boulder, CO, abbreviated as BR-DIM) up-regulated let-7 and down-regulated EZH2 expression, consistent with inhibition of self-renewal and clonogenic capacity. Moreover, BR-DIM intervention in our on-going phase II clinical trial in patients prior to radical prostatectomy showed upregulation of let-7 consistent with down-regulation of EZH2 expression in PCa tissue specimens after BR-DIM intervention. These results suggest that the loss of let-7 mediated increased expression of EZH2 contributes to PCa aggressiveness, which could be attenuated by BR-DIM treatment, and thus BR-DIM is likely to have clinical impact.


NRF-2/HO-1 Pathway-Mediated SHOX2 Activation Is a Key Switch for Heart Rate Acceleration by Yixin-Fumai Granules.

  • Heng Zhang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

Population aging has led to increased sick sinus syndrome (SSS) incidence; however, no effective and safe medical therapy has been reported thus far. Yixin-Fumai granules (YXFMs), a Chinese medicine granule designed for bradyarrhythmia treatment, can effectively increase SSS patients' heart rate. Senescence-induced sinoatrial node (SAN) degeneration is an important part of SSS pathogenesis, and older people often show high levels of oxidative stress; reactive oxygen species (ROS) accumulation in the SAN causes abnormal SAN pacing or conduction functions. The current study observed the protective effects of YXFMs on senescent SAN and explored the relationship between the NRF-2/HO-1 pathway, SHOX2, and T-type calcium channels. We selected naturally senescent C57BL/6 mice with bradycardia to simulate SSS; electrocardiography, Masson's trichrome staining, and DHE staining were used to assess SAN function and tissue damage. Immunofluorescence staining and Western blotting were used to assay related proteins. In vitro, we treated human-induced pluripotent stem cell-derived atrial myocytes (hiPSC-AMs) and mouse atrial myocyte-derived cell line HL-1 with D-galactose to simulate senescent SAN-pacemaker cells. CardioExcyte96 was used to evaluate the pulsatile function of the hiPSC-AMs, and the mechanism was verified by DCFH-DA, immunofluorescence staining, RT-qPCR, and Western blotting. The results demonstrated that YXFMs effectively inhibited senescence-induced SAN hypofunction, and this effect possibly originated from scavenging of ROS and promotion of NRF-2, SHOX2, and T-type calcium channel expression. In vitro experiment results indicated that ML385, si-SHOX2, LDN193189, and Mibefradil reversed YXFMs' effects. Moreover, we, for the first time, found that ROS accumulation may hinder SHOX2 expression; YXFMs can activate SHOX2 through the NRF-2/HO-1 pathway-mediated ROS scavenging and then regulate CACNA1G through the SHOX2/BMP4/GATA4/NKX2-5 axis, improve T-type calcium channel function, and ameliorate the SAN dysfunction. Finally, through network pharmacology and molecular docking, we screened for the most stable YXFMs compound that docks to NRF-2, laying the foundation for future studies.


Klebsiella pneumoniae Induces Inflammatory Bowel Disease Through Caspase-11-Mediated IL18 in the Gut Epithelial Cells.

  • Qianjin Zhang‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2023‎

Klebsiella pneumoniae (KLP), a Gram-negative bacterium belonging to the family of Enterobacteriaceae, is a common cause of antimicrobial-resistant opportunistic infections in hospitalized patients. KLP can colonize in the human gastrointestinal tract, especially in patients with inflammatory bowel diseases. However, effects of KLP on the onset and development of inflammatory bowel disease remain unclear.


Discovery of [1,2,4]Triazole Derivatives as New Metallo-β-Lactamase Inhibitors.

  • Chen Yuan‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

The emergence and spread of metallo-β-lactamase (MBL)-mediated resistance to β-lactam antibacterials has already threatened the global public health. A clinically useful MBL inhibitor that can reverse β-lactam resistance has not been established yet. We here report a series of [1,2,4]triazole derivatives and analogs, which displayed inhibition to the clinically relevant subclass B1 (Verona integron-encoded MBL-2) VIM-2. 3-(4-Bromophenyl)-6,7-dihydro-5H-[1,2,4]triazolo [3,4-b][1,3]thiazine (5l) manifested the most potent inhibition with an IC50 (half-maximal inhibitory concentration) value of 38.36 μM. Investigations of 5l against other B1 MBLs and the serine β-lactamases (SBLs) revealed the selectivity to VIM-2. Molecular docking analyses suggested that 5l bound to the VIM-2 active site via the triazole involving zinc coordination and made hydrophobic interactions with the residues Phe61 and Tyr67 on the flexible L1 loop. This work provided new triazole-based MBL inhibitors and may aid efforts to develop new types of inhibitors combating MBL-mediated resistance.


Comparative Genomics Analysis of Lactobacillus ruminis from Different Niches.

  • Shuo Wang‎ et al.
  • Genes‎
  • 2020‎

Lactobacillus ruminis is a commensal motile lactic acid bacterium living in the intestinal tract of humans and animals. Although a few genomes of L. ruminis were published, most of them were animal derived. To explore the genetic diversity and potential niche-specific adaptation changes of L. ruminis, in the current work, draft genomes of 81 L. ruminis strains isolated from human, bovine, piglet, and other animals were sequenced, and comparative genomic analysis was performed. The genome size and GC content of L. ruminis on average were 2.16 Mb and 43.65%, respectively. Both the origin and the sampling distance of these strains had a great influence on the phylogenetic relationship. For carbohydrate utilization, the human-derived L. ruminis strains had a higher consistency in the utilization of carbon source compared to the animal-derived strains. L. ruminis mainly increased the competitiveness of niches by producing class II bacteriocins. The type of clustered regularly interspaced short palindromic repeats /CRISPR-associated (CRISPR/Cas) system presented in L. ruminis was mainly subtype IIA. The diversity of CRISPR/Cas locus depended on the high denaturation of spacer number and sequence, although cas1 protein was relatively conservative. The genetic differences in those newly sequenced L. ruminis strains highlighted the gene gains and losses attributed to niche adaptations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: