2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Chronic vagal nerve stimulation has no effect on tachycardia-induced heart failure progression or excitation-contraction coupling.

  • Emma J Radcliffe‎ et al.
  • Physiological reports‎
  • 2020‎

Autonomic dysregulation plays a key role in the development and progression of heart failure (HF). Vagal nerve stimulation (VNS) may be a promising therapeutic approach. However, the outcomes from clinical trials evaluating VNS in HF have been mixed, and the mechanisms underlying this treatment remain poorly understood. Intermittent high-frequency VNS (pulse width 300 µs, 30 Hz stimulation, 30 s on, and 300 s off) was used in healthy sheep and sheep in which established HF had been induced by 4 weeks rapid ventricular pacing to assess (a) the effects of VNS on intrinsic cardiac vagal tone, (b) whether VNS delays the progression of established HF, and (c) whether high-frequency VNS affects the regulation of cardiomyocyte calcium handling in health and disease. VNS had no effect on resting heart rate or intrinsic vagal tone in the healthy heart. Although fewer VNS-treated animals showed subjective signs of heart failure at 6 weeks, overall VNS did not slow the progression of clinical or echocardiographic signs of HF. Chronic VNS did not affect left ventricular cardiomyocyte calcium handling in healthy sheep. Rapid ventricular pacing decreased the L-type calcium current and calcium transient amplitude, but chronic VNS did not rescue dysfunctional calcium handling. Overall, high-frequency VNS did not prevent progression of established HF or influence cellular excitation-contraction coupling. However, a different model of HF or selection of different stimulation parameters may have yielded different results. These results highlight the need for greater insight into VNS dosing and parameter selection and a deeper understanding of its physiological effects.


Eccentric contractions disrupt FKBP12 content in mouse skeletal muscle.

  • Cory W Baumann‎ et al.
  • Physiological reports‎
  • 2014‎

Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from impaired voltage-gated sarcoplasmic reticulum (SR) Ca(2+) release. FKBP12 is a 12-kD immunophilin known to bind to the SR Ca(2+) release channel (ryanodine receptor, RyR1) and plays an important role in excitation-contraction coupling. To assess the effects of eccentric contractions on FKBP12 content, we measured anterior crural muscle (tibialis anterior [TA], extensor digitorum longus [EDL], extensor hallucis longus muscles) strength and FKBP12 content in pellet and supernatant fractions after centrifugation via immunoblotting from mice before and after a single bout of either 150 eccentric or concentric contractions. There were no changes in peak isometric torque or FKBP12 content in TA muscles after concentric contractions. However, FKBP12 content was reduced in the pelleted fraction immediately after eccentric contractions, and increased in the soluble protein fraction 3 day after injury induction. FKBP12 content was correlated (P = 0.025; R(2) = 0.38) to strength deficits immediately after injury induction. In summary, eccentric contraction-induced muscle injury is associated with significant alterations in FKBP12 content after injury, and is correlated with changes in peak isometric torque.


Calcium- and voltage-driven atrial alternans: Insight from [Ca]i and Vm asynchrony.

  • G Kanaporis‎ et al.
  • Physiological reports‎
  • 2023‎

Cardiac alternans is defined as beat-to-beat alternations in contraction strength, action potential duration (APD), and Ca transient (CaT) amplitude. Cardiac excitation-contraction coupling relies on the activity of two bidirectionally coupled excitable systems, membrane voltage (Vm ) and Ca release. Alternans has been classified as Vm - or Ca-driven, depending whether a disturbance of Vm or [Ca]i regulation drives the alternans. We determined the primary driver of pacing induced alternans in rabbit atrial myocytes, using combined patch clamp and fluorescence [Ca]i and Vm measurements. APD and CaT alternans are typically synchronized; however, uncoupling between APD and CaT regulation can lead to CaT alternans in the absence of APD alternans, and APD alternans can fail to precipitate CaT alternans, suggesting a considerable degree of independence of CaT and APD alternans. Using alternans AP voltage clamp protocols with extra APs showed that most frequently the pre-existing CaT alternans pattern prevailed after the extra-beat, indicating that alternans is Ca-driven. In electrically coupled cell pairs, dyssynchrony of APD and CaT alternans points to autonomous regulation of CaT alternans. Thus, with three novel experimental protocols, we collected evidence for Ca-driven alternans; however, the intimately intertwined regulation of Vm and [Ca]i precludes entirely independent development of CaT and APD alternans.


mTOR-mediated calcium transients affect cardiac function in ex vivo ischemia-reperfusion injury.

  • Briana K Shimada‎ et al.
  • Physiological reports‎
  • 2021‎

The mechanistic target of rapamycin (mTOR) is a key mediator of energy metabolism, cell growth, and survival. While previous studies using transgenic mice with cardiac-specific overexpression of mTOR (mTOR-Tg) demonstrated the protective effects of cardiac mTOR against ischemia-reperfusion (I/R) injury in both ex vivo and in vivo models, the mechanisms underlying the role of cardiac mTOR in cardiac function following I/R injury are not well-understood. Torin1, a pharmacological inhibitor of mTOR complex (mTORC) 1 and mTORC2, significantly decreased functional recovery of LV developed pressure in ex vivo I/R models (p < 0.05). To confirm the role of mTOR complexes in I/R injury, we generated cardiac-specific mTOR-knockout (CKO) mice. In contrast to the effects of Torin1, CKO hearts recovered better after I/R injury than control hearts (p < 0.05). Interestingly, the CKO hearts had exhibited irregular contractions during the reperfusion phase. Calcium is a major factor in Excitation-Contraction (EC) coupling via Sarcoplasmic Reticulum (SR) calcium release. Calcium is also key in opening the mitochondrial permeability transition pore (mPTP) and cell death following I/R injury. Caffeine-induced SR calcium release in isolated CMs showed that total SR calcium content was lower in CKO than in control CMs. Western blotting showed that a significant amount of mTOR localizes to the SR/mitochondria and that GSK3-β phosphorylation, a key factor in SR calcium mobilization, was decreased. These findings suggest that cardiac mTOR located to the SR/mitochondria plays a vital role in EC coupling and cell survival in I/R injury.


Gestation changes sodium pump isoform expression, leading to changes in ouabain sensitivity, contractility, and intracellular calcium in rat uterus.

  • Rachel V Floyd‎ et al.
  • Physiological reports‎
  • 2017‎

Developmental and tissue-specific differences in isoforms allow Na+, K+-ATPase function to be tightly regulated, as they control sensitivity to ions and inhibitors. Uterine contraction relies on the activity of the Na+, K+ATPase, which creates ionic gradients that drive excitation-contraction coupling. It is unknown whether Na+, K+ATPase isoforms are regulated throughout pregnancy or whether they have a direct role in modulating uterine contractility. We hypothesized that gestation-dependent differential expression of isoforms would affect contractile responses to Na+, K+ATPase α subunit inhibition with ouabain. Our aims were therefore: (1) to determine the gestation-dependent expression of mRNA transcripts, protein abundance and tissue distribution of Na+, K+ATPase isoforms in myometrium; (2) to investigate the functional effects of differential isoform expression via ouabain sensitivity; and (3) if changes in contractile responses can be explained by changes in intracellular [Ca2+]. Changes in abundance and distribution of the Na+, K+ATPase α, β and FXYD1 and 2 isoforms, were studied in rat uterus from nonpregnant, and early, mid-, and term gestation. All α, β subunit isoforms (1,2,3) and FXYD1 were detected but FXYD2 was absent. The α1 and β1 isoforms were unchanged throughout pregnancy, whereas α2 and α3 significant decreased at term while β2 and FXYD1 significantly increased from mid-term onwards. These changes in expression correlated with increased functional sensitivity to ouabain, and parallel changes in intracellular Ca2+, measured with Indo-1. In conclusion, gestation induces specific regulatory changes in expression of Na+, K+ATPase isoforms in the uterus which influence contractility and may be related to the physiological requirements for successful pregnancy and delivery.


T-tubule remodeling and increased heterogeneity of calcium release during the progression to heart failure in intact rat ventricle.

  • Jasleen K Singh‎ et al.
  • Physiological reports‎
  • 2017‎

A highly organized transverse-tubule (TT) system is essential to normal Ca2+ cycling and cardiac function. We explored the relationship between the progressive disruption of TTs and resulting Ca2+ cycling during the development of heart failure (HF). Confocal imaging was used to measure Ca2+ transients and 2-D z-stack images in left ventricular epicardial myocytes of intact hearts from spontaneously hypertensive rats (SHR) and Wistar-Kyoto control rats. TT organization was measured as the organizational index (OI) derived from a fast Fourier transform of TT organization. We found little decrease in the synchrony of Ca2+ release with TT loss until TT remodeling was severe, suggesting a TT "reserve" characterized by a wide range of TT remodeling with little effect on synchrony of release but beyond which variability in release shows an accelerating sensitivity to TT loss. To explain this observation, we applied a computational model of spatially distributed Ca2+ signaling units to investigate the relationship between OI and excitation-contraction coupling. Our model showed that release heterogeneity exhibits a nonlinear relationship on both the spatial distribution of release units and the separation between L-type Ca2+ channels and ryanodine receptors. Our results demonstrate a unique relationship between the synchrony of Ca2+ release and TT organization in myocytes of intact rat ventricle that may contribute to both the compensated and decompensated phases of heart failure.


Impaired calcium handling mechanisms in atrial trabeculae of diabetic patients.

  • Timothy L M Jones‎ et al.
  • Physiological reports‎
  • 2023‎

The aim of this study was to investigate cardiomyocyte Ca2+ handling and contractile function in freshly excised human atrial tissue from diabetic and non-diabetic patients undergoing routine surgery. Multicellular trabeculae (283 ± 20 μm in diameter) were dissected from the endocardial surface of freshly obtained right atrial appendage samples from consenting surgical patients. Trabeculae were mounted in a force transducer at optimal length, electrically stimulated to contract, and loaded with fura-2/AM for intracellular Ca2+ measurements. The response to stimulation frequencies encompassing the physiological range was recorded at 37°C. Myofilament Ca2+ sensitivity was assessed from phase plots and high potassium contractures of force against [Ca2+ ]i . Trabeculae from diabetic patients (n = 12) had increased diastolic (resting) [Ca2+ ]i (p = 0.03) and reduced Ca2+ transient amplitude (p = 0.04) when compared to non-diabetic patients (n = 11), with no difference in the Ca2+ transient time course. Diastolic stress was increased (p = 0.008) in trabeculae from diabetic patients, and peak developed stress decreased (p ≤ 0.001), which were not accounted for by reduction in the cardiomyocyte, or contractile protein, content of trabeculae. Trabeculae from diabetic patients also displayed diminished myofilament Ca2+ sensitivity (p = 0.018) compared to non-diabetic patients. Our data provides evidence of impaired calcium handling during excitation-contraction coupling with resulting contractile dysfunction in atrial tissue from patients with type 2 diabetes in comparison to the non-diabetic. This highlights the importance of targeting cardiomyocyte Ca2+ homeostasis in developing more effective treatment options for diabetic heart disease in the future.


Voltage sensor current, SR Ca2+ release, and Ca2+ channel current during trains of action potential-like depolarizations of skeletal muscle fibers.

  • Hugo Bibollet‎ et al.
  • Physiological reports‎
  • 2023‎

In skeletal muscle, CaV 1.1 serves as the voltage sensor for both excitation-contraction coupling (ECC) and L-type Ca2+ channel activation. We have recently adapted the technique of action potential (AP) voltage clamp (APVC) to monitor the current generated by the movement of intramembrane voltage sensors (IQ ) during single imposed transverse tubular AP-like depolarization waveforms (IQAP ). We now extend this procedure to monitoring IQAP , and Ca2+ currents during trains of tubular AP-like waveforms in adult murine skeletal muscle fibers, and compare them with the trajectories of APs and AP-induced Ca2+ release measured in other fibers using field stimulation and optical probes. The AP waveform remains relatively constant during brief trains (<1 sec) for propagating APs in non-V clamped fibers. Trains of 10 AP-like depolarizations at 10 Hz (900 ms), 50 Hz (180 ms), or 100 Hz (90 ms) did not alter IQAP amplitude or kinetics, consistent with previous findings in isolated muscle fibers where negligible charge immobilization occurred during 100 ms step depolarizations. Using field stimulation, Ca2+ release did exhibit a considerable decline from pulse to pulse during the train, also consistent with previous findings, indicating that the decline of Ca2+ release during a short train of APs is not correlated to modification of charge movement. Ca2+ currents during single or 10 Hz trains of AP-like depolarizations were hardly detectable, were minimal during 50 Hz trains, and became more evident during 100 Hz trains in some fibers. Our results verify predictions on the behavior of the ECC machinery in response to AP-like depolarizations and provide a direct demonstration that Ca2+ currents elicited by single AP-like waveforms are negligible, but can become more prominent in some fibers during short high-frequency train stimulation that elicits maximal isometric force.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: