Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Exposure to bisphenol A enhanced lung eosinophilia in adult male mice.

  • Miao He‎ et al.
  • Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology‎
  • 2016‎

Bisphenol A (BPA) is useful in many manufacturing processes and is also found in commonly used consumer products. Previous experimental studies have reported that perinatal exposure to BPA promotes the development of allergic lung inflammation in childhood and even into adulthood. In this study, the effects of BPA on allergic lung inflammation in adults were investigated in murine lungs.


Enhancement of OVA-induced murine lung eosinophilia by co-exposure to contamination levels of LPS in Asian sand dust and heated dust.

  • Yahao Ren‎ et al.
  • Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology‎
  • 2014‎

A previous study has shown that the aggravation of Asian sand dust (ASD) on ovalbumin (OVA)-induced lung eosinphilia was more severe in lipopolysaccharide (LPS)-rich ASD than in SiO2-rich ASD. Therefore, the effects of different LPS contamination levels in ASD on the aggravation of OVA-induced lung eosinophilia were investigated in the present study.


Lung inflammation by fungus, Bjerkandera adusta isolated from Asian sand dust (ASD) aerosol and enhancement of ovalbumin-induced lung eosinophilia by ASD and the fungus in mice.

  • Boying Liu‎ et al.
  • Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology‎
  • 2014‎

Bjerkandera adusta (B. adusta) is one of the most important etiological fungi associated with chronic cough. However, precise details of the inflammatory response to exposure are not well understood yet. B. adusta was recently identified in Asian sand dust (ASD) aerosol. Therefore, in the present study the exacerbating effects of ASD on B. adusta-induced lung inflammation and B. adusta + ASD on ovalbumin (OVA)-induced murine lung eosinophilia were investigated using experimental mice.


Induction of immune tolerance and reduction of aggravated lung eosinophilia by co-exposure to Asian sand dust and ovalbumin for 14 weeks in mice.

  • Miao He‎ et al.
  • Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology‎
  • 2013‎

Atmospheric contamination caused by Asian sand-dust (ASD) storms aggravates asthma in both human adults and children. This study aims to investigate a series of manifestations in allergic airway disease caused by co-exposure to allergens and ASD for 6 weeks and 14 weeks.


Urban PM2.5 exacerbates allergic inflammation in the murine lung via a TLR2/TLR4/MyD88-signaling pathway.

  • Miao He‎ et al.
  • Scientific reports‎
  • 2017‎

Nevertheless its mechanism has not been well explained yet, PM2.5 is recognized to exacerbate asthma. In the present study, the roles of toll-like receptor (TLR) 2, TLR4 and MyD88, in exacerbation of allergen-induced lung eosinophilia caused by urban PM2.5 was investigated. TLR2-, TLR4-, MyD88-deficient and WT BALB/c mice were intratracheally challenged with PM2.5 +/- ovalbumin (OVA) four times at 2-week intervals. PM2.5 increased neutrophil numbers and KC in bronchoalveolar lavage fluid and caused slight peribronchiolar inflammation in WT mice. However, these changes were attenuated, but not completely suppressed in gene-deficient mice, especially in MyD88-/- mice. In WT mice, PM2.5 + OVA exacerbated OVA-related lung eosinophilia. This exacerbation includes increase of IL-5, IL-13, eotaxin and MCP-3; infiltration of eosinophils into the airway submucosa; proliferation of goblet cells in the airway epithelium; and the production of antigen-specific IgE and IgG1 in serum. All these effects were stronger in TLR2-/- mice than in TLR4-/- mice. In MyD88-/- mice, this pro-inflammatory mediator-inducing ability was considerably weak and lung pathology was negligible. These results suggest that urban PM2.5 may exacerbate allergic inflammation in the murine lung via a TLR2/TLR4/MyD88-signaling pathway. PM2.5-bound trace microbial elements, such as lipopolysaccharide may be a strong candidate for exacerbation of murine lung eosinophilia.


Aggravation of ovalbumin-induced murine asthma by co-exposure to desert-dust and organic chemicals: an animal model study.

  • Yahao Ren‎ et al.
  • Environmental health : a global access science source‎
  • 2014‎

The organic chemicals present in Asian sand dust (ASD) might contribute to the aggravation of lung eosinophila. Therefore, the aggravating effects of the Tar fraction from ASD on ovalbumin (OVA)-induced lung eosinophilia were investigated.


Co-exposure to lipopolysaccharide and desert dust causes exacerbation of ovalbumin-induced allergic lung inflammation in mice via TLR4/MyD88-dependent and -independent pathways.

  • Yahao Ren‎ et al.
  • Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology‎
  • 2019‎

Lipopolysaccharide (LPS) often presents in high concentrations in particulate matter (PM), few studies have reported the enhancing effects of both LPS and PM on airway inflammation in mice and the role of toll-like receptors (TLRs) in this process. Asian sand dust (ASD) is observed most frequently during the spring. This study aimed to clarify the role of TLRs in murine lung eosinophilia exacerbated by ASD and LPS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: