2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 38 papers

Spontaneous Prophage Induction Contributes to the Production of Membrane Vesicles by the Gram-Positive Bacterium Lacticaseibacillus casei BL23.

  • David da Silva Barreira‎ et al.
  • mBio‎
  • 2022‎

The formation of membrane vesicles (MVs) by Gram-positive bacteria has gained increasing attention over the last decade. Recently, models of vesicle formation have been proposed and involve the digestion of the cell wall by prophage-encoded or stress-induced peptidoglycan (PG) hydrolases and the inhibition of PG synthesis by β-lactam antibiotics. The impact of these mechanisms on vesicle formation is largely dependent on the strain and growth conditions. To date, no information on the production of vesicles by the lactobacilli family has been reported. Here, we aimed to characterize the MVs released by the Gram-positive bacteria Lacticaseibacillus casei BL23 and also investigated the mechanisms involved in vesicle formation. Using electron microscopy, we established that the size of the majority of L. casei BL23 vesicles ranged from 50 to 100 nm. Furthermore, we showed that the vesicles were released consistently throughout the growth of the bacteria in standard culture conditions. The protein composition of the vesicles released in the supernatant was identified and a significant number of prophage proteins was detected. Moreover, using a mutant strain harboring a defective PLE2 prophage, we were able to show that the spontaneous and mitomycin-triggered induction of the prophage PLE2 contribute to the production of MVs by L. casei BL23. Finally, we also demonstrated the influence of prophages on the membrane integrity of bacteria. Overall, our results suggest a key role of the prophage PLE2 in the production of MVs by L. casei BL23 in the absence or presence of genotoxic stress. IMPORTANCE The last few decades have demonstrated that membrane vesicles (MVs) produced by microorganisms can have a wide variety of functions. This diversity places MVs at the crossroads of major research topics in current microbiology such as antibiotic resistance, horizontal gene transfer, cell communication, biofilm development, bacteriophage resistance, and pathogenesis. In particular, vesicles produced by probiotic strains have been shown to play a significant role in their beneficial effects. Thus, the study of vesicle biogenesis is a key element for promoting and improving their release. Overall, our results suggest a key role of spontaneous and mitomycin-triggered prophage induction in MV production by the Gram-positive bacteria Lacticaseibacillus casei BL23. This phenomenon is of great interest as prophage-induced MVs could potentially influence bacterial behavior, stress resistance, and vesicle functions.


Toxoplasma gondii GRA28 Is Required for Placenta-Specific Induction of the Regulatory Chemokine CCL22 in Human and Mouse.

  • Elizabeth N Rudzki‎ et al.
  • mBio‎
  • 2021‎

Toxoplasma gondii is an intracellular protozoan pathogen of humans that can cross the placenta and result in adverse pregnancy outcomes and long-term birth defects. The mechanisms used by T. gondii to cross the placenta are unknown, but complex interactions with the host immune response are likely to play a role in dictating infection outcomes during pregnancy. Prior work showed that T. gondii infection dramatically and specifically increases the secretion of the immunomodulatory chemokine CCL22 in human placental cells during infection. Given the important role of this chemokine during pregnancy, we hypothesized that CCL22 induction was driven by a specific T. gondii-secreted effector. Using a combination of bioinformatics and molecular genetics, we have now identified T. gondii GRA28 as the gene product required for CCL22 induction. GRA28 is secreted into the host cell, where it localizes to the nucleus, and deletion of the GRA28 gene results in reduced CCL22 placental cells as well as a human monocyte cell line. The impact of GRA28 on CCL22 production is also conserved in mouse immune and placental cells both in vitro and in vivo. Moreover, parasites lacking GRA28 are impaired in their ability to disseminate throughout the animal, suggesting a link between CCL22 induction and the ability of the parasite to cause disease. Overall, these data demonstrate a clear function for GRA28 in altering the immunomodulatory landscape during infection of both placental and peripheral immune cells and show a clear impact of this immunomodulation on infection outcome. IMPORTANCE Toxoplasma gondii is a globally ubiquitous pathogen that can cause severe disease in HIV/AIDS patients and can also cross the placenta and infect the developing fetus. We have found that placental and immune cells infected with T. gondii secrete significant amounts of a chemokine (called CCL22) that is critical for immune tolerance during pregnancy. In order to better understand whether this is a response by the host or a process that is driven by the parasite, we have identified a T. gondii gene that is absolutely required to induce CCL22 production in human cells, indicating that CCL22 production is a process driven almost entirely by the parasite rather than the host. Consistent with its role in immune tolerance, we also found that T. gondii parasites lacking this gene are less able to proliferate and disseminate throughout the host. Taken together, these data illustrate a direct relationship between CCL22 levels in the infected host and a key parasite effector and provide an interesting example of how T. gondii can directly modulate host signaling pathways in order to facilitate its growth and dissemination.


Hepatitis C Virus Induces the Ubiquitin-Editing Enzyme A20 via Depletion of the Transcription Factor Upstream Stimulatory Factor 1 To Support Its Replication.

  • Jiyoung Lee‎ et al.
  • mBio‎
  • 2019‎

Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), also known as A20, is a ubiquitin-editing enzyme capable of ubiquitination or deubiquitination of its target proteins. In this study, we show that hepatitis C virus (HCV) infection could induce the expression of A20 via the activation of the A20 promoter. The induction of A20 by HCV coincided with the loss of upstream stimulatory factor 1 (USF-1), a transcription factor known to suppress the A20 promoter. The role of USF-1 in the regulation of the A20 promoter in HCV-infected cells was confirmed by the chromatin immunoprecipitation (ChIP) assay, and its depletion was apparently mediated by proteasomes, as USF-1 could be stabilized by the proteasome inhibitor MG132 to suppress the A20 expression. As the overexpression of A20 enhanced the replication of HCV and the silencing of A20 had the opposite effect, A20 is a positive regulator of HCV replication. Our further studies indicated that A20 enhanced the activity of the HCV internal ribosome entry site (IRES). In conclusion, our results demonstrated that HCV could induce the expression of A20 via the depletion of USF-1 to enhance its replication. Our study provided important information for further understanding the interaction between HCV and its host cells.IMPORTANCE Hepatitis C virus establishes chronic infection in approximately 85% of the patients whom it infects. However, the mechanism of how HCV evades host immunity to establish persistence is unclear. In this report, we demonstrate that HCV could induce the expression of the ubiquitin-editing enzyme A20, an important negative regulator of the tumor necrosis factor alpha (TNF-α) and NF-κB signaling pathways. This induction of A20 enhanced HCV replication as it could stimulate the HCV IRES activity to enhance the translation of HCV proteins. The induction of A20 was mediated by the depletion of USF-1, a suppressor of the A20 promoter. Our study thus provides important information for further understanding the interaction between HCV and its host cells.


The Tumor Necrosis Factor Alpha and Interleukin 6 Auto-paracrine Signaling Loop Controls Mycobacterium avium Infection via Induction of IRF1/IRG1 in Human Primary Macrophages.

  • Alexandre Gidon‎ et al.
  • mBio‎
  • 2021‎

Macrophages sense and respond to pathogens by induction of antimicrobial and inflammatory programs to alert other immune cells and eliminate the infectious threat. We have previously identified the transcription factor IRF1 to be consistently activated in macrophages during Mycobacterium avium infection, but its precise role during infection is not clear. Here, we show that tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) autocrine/paracrine signaling contributes to controlling the intracellular growth of M. avium in human primary macrophages through activation of IRF1 nuclear translocation and expression of IRG1, a mitochondrial enzyme that produces the antimicrobial metabolite itaconate. Small interfering RNA (siRNA)-mediated knockdown of IRF1 or IRG1 increased the mycobacterial load, whereas exogenously provided itaconate was bacteriostatic at high concentrations. While the overall level of endogenous itaconate was low in M. avium-infected macrophages, the repositioning of mitochondria to M. avium phagosomes suggests a mechanism by which itaconate can be delivered directly to M. avium phagosomes in sufficient quantities to inhibit growth. Using mRNA hybridization, we further show that uninfected bystander cells actively contribute to the resolution of infection by producing IL-6 and TNF-α, which, via paracrine signaling, activate IRF1/IRG1 and strengthen the antimicrobial activity of infected macrophages. This mechanism contributes to the understanding of why patients on anti-inflammatory treatment, e.g., with tocilizumab or infliximab, can be more susceptible to mycobacterial disease. IMPORTANCE The prevalence of lung diseases caused by nontuberculous mycobacteria, such as Mycobacterium avium, is increasing in countries where tuberculosis is not endemic, most likely because of an aging population that is immunocompromised from underlying disease or immunosuppressive therapy. Our study contributes to the understanding of mycobacterial survival and killing in human macrophages and, more broadly, to the impact of immunometabolism during infection. We show evidence of an antimicrobial program in human primary macrophages where activation of the transcription factor IRF1 and expression of the mitochondrial enzyme IRG1 restrict the intracellular growth of M. avium, possibly by directed delivery of itaconate to M. avium phagosomes. The study also sheds light on why patients on immunosuppressive therapy are more susceptible to mycobacterial infections, since TNF-α and IL-6 contribute to driving the described antimycobacterial program.


Unexpected Mechanism of Biodegradation and Defluorination of 2,2-Difluoro-1,3-Benzodioxole by Pseudomonas putida F1.

  • Madison D Bygd‎ et al.
  • mBio‎
  • 2021‎

Perfluorinated carbon atoms in a diether linkage are common in commercial anesthetics, drugs, fungicides, and insecticides. An important chemical group comprising perfluorodiethers is the 2,2-fluoro-1,3-benzodioxole (DFBD) moiety. The fluorine atoms stabilize the molecule by mitigating against metabolism by humans and microbes, as used in drugs and pesticides, respectively. Pseudomonas putida F1 catalyzed defluorination of DFBD at an initial rate of 2,100 nmol/h per mg cellular protein. This is orders of magnitude higher than previously reported microbial defluorination rates with multiply fluorinated carbon atoms. Defluorination rates declined after several hours, and the medium darkened. Significant defluorination activity was observed with cells grown on toluene but not l-arginine. Defluorination required only toluene dioxygenase. Pseudomonas and recombinant Escherichia coli cells expressing toluene dioxygenase oxidized DFBD to DFBD-4,5-dihydrodiol. The dihydrodiol could be oxidized to 4,5-dihydroxy-DFBD via the dihydrodiol dehydrogenase from P. putida F1. The dihydrodiol dehydrated with acid to yield a mixture of 4-hydroxy-DFBD and 5-hydroxy-DFBD. All those metabolites retained the difluoromethylene group; no fluoride or dark color was observed. The major route of DFBD-4,5-dihydrodiol decomposition produced fluoride and 1,2,3-trihydroxybenzene, or pyrogallol, and that was shown to be the source of the dark colors in the medium. A mechanism for DFBD-4,5-dihydrodiol transformation to two fluoride ions and pyrogallol is proposed. The Pseudomonas genome database and other databases revealed hundreds of bacteria with enzymes sharing high amino acid sequence identity to toluene dioxygenase from P. putida F1, suggesting the mechanism revealed here may apply to the defluorination of DFBD-containing compounds in the environment. IMPORTANCE There are more than 9,000 polyfluorinated compounds developed for commercial use, some negatively impacting human health, and they are generally considered to be resistant to biodegradation. Only a limited number of studies have identified microbes with enzymes sufficiently reactive to defluorinate difluoromethylene carbon groups. The present study examined one important group of commercial fluorinated chemicals and showed its rapid defluorination by a bacterium and its key enzyme, a Rieske dioxygenase. Rieske dioxygenases are common in environmental bacteria, and those closely resembling toluene dioxygenase from Pseudomonas putida F1 are candidates for biodegradative defluorination of the common 2,2-fluoro-1,3-benzodioxole (DFBD) moiety.


Bacterial Pathogens Hijack the Innate Immune Response by Activation of the Reverse Transsulfuration Pathway.

  • Alain P Gobert‎ et al.
  • mBio‎
  • 2019‎

The reverse transsulfuration pathway is the major route for the metabolism of sulfur-containing amino acids. The role of this metabolic pathway in macrophage response and function is unknown. We show that the enzyme cystathionine γ-lyase (CTH) is induced in macrophages infected with pathogenic bacteria through signaling involving phosphatidylinositol 3-kinase (PI3K)/MTOR and the transcription factor SP1. This results in the synthesis of cystathionine, which facilitates the survival of pathogens within myeloid cells. Our data demonstrate that the expression of CTH leads to defective macrophage activation by (i) dysregulation of polyamine metabolism by depletion of S-adenosylmethionine, resulting in immunosuppressive putrescine accumulation and inhibition of spermidine and spermine synthesis, and (ii) increased histone H3K9, H3K27, and H3K36 di/trimethylation, which is associated with gene expression silencing. Thus, CTH is a pivotal enzyme of the innate immune response that disrupts host defense. The induction of the reverse transsulfuration pathway by bacterial pathogens can be considered an unrecognized mechanism for immune escape.IMPORTANCE Macrophages are professional immune cells that ingest and kill microbes. In this study, we show that different pathogenic bacteria induce the expression of cystathionine γ-lyase (CTH) in macrophages. This enzyme is involved in a metabolic pathway called the reverse transsulfuration pathway, which leads to the production of numerous metabolites, including cystathionine. Phagocytized bacteria use cystathionine to better survive in macrophages. In addition, the induction of CTH results in dysregulation of the metabolism of polyamines, which in turn dampens the proinflammatory response of macrophages. In conclusion, pathogenic bacteria can evade the host immune response by inducing CTH in macrophages.


Carbon Catabolite Repression in Filamentous Fungi Is Regulated by Phosphorylation of the Transcription Factor CreA.

  • Leandro José de Assis‎ et al.
  • mBio‎
  • 2021‎

Filamentous fungi of the genus Aspergillus are of particular interest for biotechnological applications due to their natural capacity to secrete carbohydrate-active enzymes (CAZy) that target plant biomass. The presence of easily metabolizable sugars such as glucose, whose concentrations increase during plant biomass hydrolysis, results in the repression of CAZy-encoding genes in a process known as carbon catabolite repression (CCR), which is undesired for the purpose of large-scale enzyme production. To date, the C2H2 transcription factor CreA has been described as the major CC repressor in Aspergillus spp., although little is known about the role of posttranslational modifications in this process. In this work, phosphorylation sites were identified by mass spectrometry on Aspergillus nidulans CreA, and subsequently, the previously identified but uncharacterized site S262, the characterized site S319, and the newly identified sites S268 and T308 were chosen to be mutated to nonphosphorylatable residues before their effect on CCR was investigated. Sites S262, S268, and T308 are important for CreA protein accumulation and cellular localization, DNA binding, and repression of enzyme activities. In agreement with a previous study, site S319 was not important for several here-tested phenotypes but is key for CreA degradation and induction of enzyme activities. All sites were shown to be important for glycogen and trehalose metabolism. This study highlights the importance of CreA phosphorylation sites for the regulation of CCR. These sites are interesting targets for biotechnological strain engineering without the need to delete essential genes, which could result in undesired side effects.IMPORTANCE In filamentous fungi, the transcription factor CreA controls carbohydrate metabolism through the regulation of genes encoding enzymes required for the use of alternative carbon sources. In this work, phosphorylation sites were identified on Aspergillus nidulans CreA, and subsequently, the two newly identified sites S268 and T308, the previously identified but uncharacterized site S262, and the previously characterized site S319 were chosen to be mutated to nonphosphorylatable residues before their effect on CCR was characterized. Sites S262, S268, and T308 are important for CreA protein accumulation and cellular localization, DNA binding, and repression of enzyme activities. In agreement with a previous study, site S319 is not important for several here-tested phenotypes but is key for CreA degradation and induction of enzyme activities. This work characterized novel CreA phosphorylation sites under carbon catabolite-repressing conditions and showed that they are crucial for CreA protein turnover, control of carbohydrate utilization, and biotechnologically relevant enzyme production.


Increased Osmolarity in Biofilm Triggers RcsB-Dependent Lipid A Palmitoylation in Escherichia coli.

  • Magdalena Szczesny‎ et al.
  • mBio‎
  • 2018‎

Biofilms are often described as protective shelters that preserve bacteria from hostile surroundings. However, biofilm bacteria are also exposed to various stresses and need to adjust to the heterogeneous physicochemical conditions prevailing within biofilms. In Gram-negative bacteria, such adaptations can result in modifications of the lipopolysaccharide, a major component of the outer membrane characterized by a highly dynamic structure responding to environmental changes. We previously showed that Gram-negative biofilm bacteria undergo an increase in lipid A palmitoylation mediated by the PagP enzyme, contributing to increased resistance to host defenses. Here we describe a regulatory pathway leading to transcriptional induction of pagP in response to specific conditions created in the biofilm environment. We show that pagP expression is induced via the Rcs envelope stress system independently of the Rcs phosphorelay cascade and that it requires the GadE auxiliary regulator. Moreover, we identify an increase in osmolarity (i.e., ionic stress) as a signal able to induce pagP expression in an RcsB-dependent manner. Consistently, we show that the biofilm is a hyperosmolar environment and that RcsB-dependent pagP induction can be dampened in the presence of an osmoprotectant. These results provide new insights into the adaptive mechanisms of bacterial differentiation in biofilm.IMPORTANCE The development of the dense bacterial communities called biofilms creates a highly heterogeneous environment in which bacteria are subjected to a variety of physicochemical stresses. We investigated the mechanisms of a widespread and biofilm-associated chemical modification of the lipopolysaccharide (LPS), a major component of all Gram-negative bacterial outer membranes. This modification corresponds to the incorporation, mediated by the enzyme PagP, of a palmitate chain into lipid A (palmitoylation) that reduces bacterial recognition by host immune responses. Using biochemical and genetic approaches, we demonstrate that a significant part of biofilm-associated lipid A palmitoylation is triggered upon induction of pagP transcription by the hyperosmolar biofilm environment. pagP induction is regulated by RcsB, the response regulator of the Rcs stress response pathway, and is not observed under planktonic conditions. Our report provides new insights into how physiological adaptations to local biofilm microenvironments can contribute to decreases in susceptibility to antimicrobial agents and host immune defenses.


Exogenous Stimulation of Type I Interferon Protects Mice with Chronic Granulomatous Disease from Aspergillosis through Early Recruitment of Host-Protective Neutrophils into the Lung.

  • Seyedmojtaba Seyedmousavi‎ et al.
  • mBio‎
  • 2018‎

Invasive aspergillosis (IA) remains the primary cause of morbidity and mortality in chronic granulomatous disease (CGD) patients, often due to infection by Aspergillus species refractory to antifungals. This motivates the search for alternative treatments, including immunotherapy. We investigated the effect of exogenous type I interferon (IFN) activation on the outcome of IA caused by three Aspergillus species, A. fumigatus, A. nidulans, and A. tanneri, in CGD mice. The animals were treated with poly(I):poly(C) carboxymethyl cellulose poly-l-lysine (PICLC), a mimetic of double-stranded RNA, 24 h preinfection and postinfection. The survival rates and lung fungal burdens were markedly improved by PICLC immunotherapy in animals infected with any one of the three Aspergillus species. While protection from IA was remarkable, PICLC induction of type I IFN in the lungs surged 24 h posttreatment and returned to baseline levels by 48 h, suggesting that PICLC altered early events in protection against IA. Immunophenotyping of recruited leukocytes and histopathological examination of tissue sections showed that PICLC induced similar cellular infiltrates as those in untreated-infected mice, in both cases dominated by monocytic cells and neutrophils. However, the PICLC immunotherapy resulted in a marked earlier recruitment of the leukocytes. Unlike with conidia, infection with A. nidulans germlings reduced the protective effect of PICLC immunotherapy. Additionally, antibody depletion of neutrophils totally reversed the protection, suggesting that neutrophils are crucial for PICLC-mediated protection. Together, these data show that prophylactic PICLC immunotherapy prerecruits these cells, enabling them to attack the conidia and thus resulting in a profound protection from IA.IMPORTANCE Patients with chronic granulomatous disease (CGD) are highly susceptible to invasive aspergillosis (IA). While Aspergillus fumigatus is the most-studied Aspergillus species, CGD patients often suffer IA caused by A. nidulans, A. tanneri, and other rare species. These non-fumigatus Aspergillus species are more resistant to antifungal drugs and cause higher fatality rates than A. fumigatus Therefore, alternative therapies are needed to protect CGD patients. We report an effective immunotherapy of mice infected with three Aspergillus species via PICLC dosing. While protection from IA was long lasting, PICLC induction of type I IFN surged but quickly returned to baseline levels, suggesting that PICLC was altering early events in IA. Interestingly, we found responding immune cells to be similar between PICLC-treated and untreated-infected mice. However, PICLC immunotherapy resulted in an earlier recruitment of the leukocytes and suppressed fungal growth. This study highlights the value of type I IFN induction in CGD patients.


Kaposi Sarcoma Herpesvirus Induces HO-1 during De Novo Infection of Endothelial Cells via Viral miRNA-Dependent and -Independent Mechanisms.

  • Sara Botto‎ et al.
  • mBio‎
  • 2015‎

Kaposi sarcoma (KS) herpesvirus (KSHV) infection of endothelial cells (EC) is associated with strong induction of heme oxygenase-1 (HO-1), a stress-inducible host gene that encodes the rate-limiting enzyme responsible for heme catabolism. KS is an angioproliferative tumor characterized by the proliferation of KSHV-infected spindle cells, and HO-1 is highly expressed in such cells. HO-1 converts the pro-oxidant, proinflammatory heme molecule into metabolites with antioxidant, anti-inflammatory, and proliferative activities. Previously published work has shown that KSHV-infected EC in vitro proliferate in response to free heme in a HO-1-dependent manner, thus implicating virus-enhanced HO-1 activity in KS tumorigenesis. The present study investigated the molecular mechanisms underlying KSHV induction of HO-1 in lymphatic EC (LEC), which are the likely spindle cell precursors. In a time course analysis of KSHV-infected cells, HO-1 expression displays biphasic kinetics characterized by an early transient induction that is followed by a more sustained upregulation coincident with the establishment of viral latency. A viral microRNA miR-K12-11 deletion mutant of KSHV was found to be defective for induction of HO-1 during latency. A potential mechanism for this phenotype was provided by BACH1, a cellular HO-1 transcriptional repressor targeted by miR-K12-11. In fact, in KSHV-infected LEC, the BACH1 message level is reduced, BACH1 subcellular localization is altered, and miR-K12-11 mediates the inverse regulation of HO-1 and BACH1 during viral latency. Interestingly, the data indicate that neither miR-K12-11 nor de novo KSHV gene expression is required for the burst of HO-1 expression observed at early times postinfection, which suggests that additional virion components promote this phenotype.


A Shift in Central Metabolism Accompanies Virulence Activation in Pseudomonas aeruginosa.

  • Kumar Perinbam‎ et al.
  • mBio‎
  • 2020‎

The availability of energy has significant impact on cell physiology. However, the role of cellular metabolism in bacterial pathogenesis is not understood. We investigated the dynamics of central metabolism during virulence induction by surface sensing and quorum sensing in early-stage biofilms of the multidrug-resistant bacterium Pseudomonas aeruginosa We established a metabolic profile for P. aeruginosa using fluorescence lifetime imaging microscopy (FLIM), which reports the activity of NADH in live cells. We identified a critical growth transition period during which virulence is activated. We performed FLIM measurements and direct measurements of NADH and NAD+ concentrations during this period. Here, planktonic (low-virulence) and surface-attached (virulence-activated) populations diverged into distinct metabolic states, with the surface-attached population exhibiting FLIM lifetimes that were associated with lower levels of enzyme-bound NADH and decreasing total NAD(H) production. We inhibited virulence by perturbing central metabolism using citrate and pyruvate, which further decreased the enzyme-bound NADH fraction and total NAD(H) production and suggested the involvement of the glyoxylate pathway in virulence activation in surface-attached populations. In addition, we induced virulence at an earlier time using the electron transport chain oxidase inhibitor antimycin A. Our results demonstrate the use of FLIM to noninvasively measure NADH dynamics in biofilms and suggest a model in which a metabolic rearrangement accompanies the virulence activation period.IMPORTANCE The rise of antibiotic resistance requires the development of new strategies to combat bacterial infection and pathogenesis. A major direction has been the development of drugs that broadly target virulence. However, few targets have been identified due to the species-specific nature of many virulence regulators. The lack of a virulence regulator that is conserved across species has presented a further challenge to the development of therapeutics. Here, we identify that NADH activity has an important role in the induction of virulence in the pathogen P. aeruginosa This finding, coupled with the ubiquity of NADH in bacterial pathogens, opens up the possibility of targeting enzymes that process NADH as a potential broad antivirulence approach.


Pulmonary Iron Limitation Induced by Exogenous Type I IFN Protects Mice from Cryptococcus gattii Independently of T Cells.

  • Michael J Davis‎ et al.
  • mBio‎
  • 2019‎

Cryptococcus neoformans causes deadly mycosis primarily in AIDS patients, whereas Cryptococcus gattii infects mostly non-HIV patients, even in regions with high burdens of HIV/AIDS and an established environmental presence of C. gattii As HIV induces type I IFN (t1IFN), we hypothesized that t1IFN would differentially affect the outcome of C. neoformans and C. gattii infections. Exogenous t1IFN induction using stabilized poly(I·C) (pICLC) improved murine outcomes in either cryptococcal infection. In C. neoformans-infected mice, pICLC activity was associated with C. neoformans containment and classical Th1 immunity. In contrast, pICLC activity against C. gattii did not require any immune factors previously associated with C. neoformans immunity: T, B, and NK cells, IFN-γ, and macrophages were all dispensable. Interestingly, C. gattii pICLC activity depended on β-2-microglobulin, which impacts iron levels among other functions. Iron supplementation reversed pICLC activity, suggesting C. gattii pICLC activity requires iron limitation. Also, pICLC induced a set of iron control proteins, some of which were directly inhibitory to cryptococcus in vitro, suggesting t1IFN regulates iron availability in the pulmonary air space fluids. Thus, exogenous induction of t1IFN significantly improves the outcome of murine infection by C. gattii and C. neoformans but by distinct mechanisms; the C. gattii effect was mediated by iron limitation, while the effect on C. neoformans infection was through induction of classical T-cell-dependent immunity. Together this difference in types of T-cell-dependent t1IFN immunity for different Cryptococcus species suggests a possible mechanism by which HIV infection may select against C. gattii but not C. neoformansIMPORTANCECryptococcus neoformans and Cryptococcus gattii cause fatal infection in immunodeficient and immunocompetent individuals. While these fungi are sibling species, C. gattii infects very few AIDS patients, while C. neoformans infection is an AIDS-defining illness, suggesting that the host response to HIV selects C. neoformans over C. gattii We used a viral mimic molecule (pICLC) to stimulate the immune response, and pICLC treatment improved mouse outcomes from both species. pICLC-induced action against C. neoformans was due to activation of well-defined immune pathways known to deter C. neoformans, whereas these immune pathways were dispensable for pICLC treatment of C. gattii Since these immune pathways are eventually destroyed by HIV/AIDS, our data help explain why the antiviral immune response in AIDS patients is unable to control C. neoformans infection but is protective against C. gattii Furthermore, pICLC induced tighter control of iron in the lungs of mice, which inhibited C. gattii, thus suggesting an entirely new mode of nutritional immunity activated by viral signals.


NusG-Dependent RNA Polymerase Pausing and Tylosin-Dependent Ribosome Stalling Are Required for Tylosin Resistance by Inducing 23S rRNA Methylation in Bacillus subtilis.

  • Helen Yakhnin‎ et al.
  • mBio‎
  • 2019‎

Macrolide antibiotics bind to 23S rRNA within the peptide exit tunnel of the ribosome, causing the translating ribosome to stall when an appropriately positioned macrolide arrest motif is encountered in the nascent polypeptide. Tylosin is a macrolide antibiotic produced by Streptomyces fradiae Resistance to tylosin in S. fradiae is conferred by methylation of 23S rRNA by TlrD and RlmAII Here, we demonstrate that yxjB encodes RlmAII in Bacillus subtilis and that YxjB-specific methylation of 23S rRNA in the peptide exit tunnel confers tylosin resistance. Growth in the presence of subinhibitory concentrations of tylosin results in increased rRNA methylation and increased resistance. In the absence of tylosin, yxjB expression is repressed by transcription attenuation and translation attenuation mechanisms. Tylosin-dependent induction of yxjB expression relieves these two repression mechanisms. Induction requires tylosin-dependent ribosome stalling at an RYR arrest motif at the C terminus of a leader peptide encoded upstream of yxjB Furthermore, NusG-dependent RNA polymerase pausing between the leader peptide and yxjB coding sequences is essential for tylosin-dependent induction. Pausing synchronizes the position of RNA polymerase with ribosome position such that the stalled ribosome prevents transcription termination and formation of an RNA structure that sequesters the yxjB ribosome binding site. On the basis of our results, we are renaming yxjB as tlrBIMPORTANCE Antibiotic resistance is a growing health concern. Resistance mechanisms have evolved that provide bacteria with a growth advantage in their natural habitat such as the soil. We determined that B. subtilis, a Gram-positive soil organism, has a mechanism of resistance to tylosin, a macrolide antibiotic commonly used in the meat industry. Tylosin induces expression of yxjB, which encodes an enzyme that methylates 23S rRNA. YxjB-dependent methylation of 23S rRNA confers tylosin resistance. NusG-dependent RNA polymerase pausing and tylosin-dependent ribosome stalling induce yxjB expression, and hence tylosin resistance, by preventing transcription termination upstream of the yxjB coding sequence and by preventing repression of yxjB translation.


Vaccination with adjuvanted recombinant neuraminidase induces broad heterologous, but not heterosubtypic, cross-protection against influenza virus infection in mice.

  • Teddy John Wohlbold‎ et al.
  • mBio‎
  • 2015‎

In an attempt to assess the cross-protective potential of the influenza virus neuraminidase (NA) as a vaccine antigen, different subtypes of recombinant NA were expressed in a baculovirus system and used to vaccinate mice prior to lethal challenge with homologous, heterologous, or heterosubtypic viruses. Mice immunized with NA of subtype N2 were completely protected from morbidity and mortality in a homologous challenge and displayed significantly reduced viral lung titers. Heterologous challenge with a drifted strain resulted in morbidity but no mortality. Similar results were obtained for challenge experiments with N1 NA. Mice immunized with influenza B virus NA (from B/Yamagata/16/88) displayed no morbidity when sublethally infected with the homologous strain and, importantly, were completely protected from morbidity and mortality when lethally challenged with the prototype Victoria lineage strain or a more recent Victoria lineage isolate. Upon analyzing the NA content in 4 different inactivated-virus vaccine formulations from the 2013-2014 season via Western blot assay and enzyme-linked immunosorbent assay quantification, we found that the amount of NA does indeed vary across vaccine brands. We also measured hemagglutinin (HA) and NA endpoint titers in pre- and postvaccination human serum samples from individuals who received a trivalent inactivated seasonal influenza vaccine from the 2004-2005 season; the induction of NA titers was statistically less pronounced than the induction of HA titers. The demonstrated homologous and heterologous protective capacity of recombinant NA suggests that supplementing vaccine formulations with a standard amount of NA may offer increased protection against influenza virus infection.


Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions.

  • Jeanette Wagener‎ et al.
  • mBio‎
  • 2017‎

The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host's arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival.


The IL-33/ST2 axis is associated with human visceral leishmaniasis and suppresses Th1 responses in the livers of BALB/c mice infected with Leishmania donovani.

  • Octavie Rostan‎ et al.
  • mBio‎
  • 2013‎

During visceral leishmaniasis, the control of hepatic parasite burden is mainly due to granuloma assembly in a microenvironment consisting of both Th1 and Th2 components. Using enzyme-linked immunosorbent assay (ELISA) dosages, quantitative PCR (qPCR), immunohistochemistry, and flow cytometry, we studied the role of interleukin-33 (IL-33), a recently described cytokine signaling through the ST2 receptor, during visceral leishmaniasis. We showed that a higher level of IL-33 was detected in the serum of patients with visceral leishmaniasis than in that from healthy donors and demonstrated the presence of IL-33(+) cells in a liver biopsy specimen from a patient. Similarly, in BALB/c mice experimentally infected with L. donovani, a higher level of IL-33 was detected in the serum, as well as the presence of IL-33(+) cells and ST2(+) cells in the mouse liver. In ST2(-/-) BALB/c mice, better control of the hepatic parasite burden and reduced hepatomegaly were observed. This was associated with strong induction of Th1 cytokines (gamma interferon [IFN-γ] and IL-12) compared to the level in wild-type (WT) mice and better recruitment of myeloid cells associated with strongly induced chemokines (CCL2 and CXCL2) and receptors (CCR2 and CXCR2). Conversely, BALB/c mice treated twice weekly with recombinant IL-33 showed a dramatically reduced induction of Th1 cytokines and delayed inhibition of monocyte and neutrophil recruitment in the liver, which was associated with reduced KC/CXCL1 and CXCR2 expression. Taken together, our results suggest that IL-33 could be a new deleterious regulator of the hepatic immune response against Leishmania donovani, via the repression of the Th1 response and myeloid cell recruitment.


Analysis of two-component systems in group B Streptococcus shows that RgfAC and the novel FspSR modulate virulence and bacterial fitness.

  • Cristina Faralla‎ et al.
  • mBio‎
  • 2014‎

Group B Streptococcus (GBS), in the transition from commensal organisms to pathogens, will encounter diverse host environments and, thus, require coordinated control of the transcriptional responses to these changes. This work was aimed at better understanding the role of two-component signal transduction systems (TCS) in GBS pathophysiology through a systematic screening procedure. We first performed a complete inventory and sensory mechanism classification of all putative GBS TCS by genomic analysis. Five TCS were further investigated by the generation of knockout strains, and in vitro transcriptome analysis identified genes regulated by these systems, ranging from 0.1% to 3% of the genome. Interestingly, two sugar phosphotransferase systems appeared to be differentially regulated in the TCS-16 knockout strain (TCS loci were numbered in order of their appearance on the chromosome), suggesting an involvement in monitoring carbon source availability. High-throughput analysis of bacterial growth on different carbon sources showed that TCS-16 was necessary for the growth of GBS on fructose-6-phosphate. Additional transcriptional analysis provided further evidence for a stimulus-response circuit where extracellular fructose-6-phosphate leads to autoinduction of TCS-16, with concomitant dramatic upregulation of the adjacent operon, which encodes a phosphotransferase system. The TCS-16-deficient strain exhibited decreased persistence in a model of vaginal colonization. All mutant strains were also characterized in a murine model of systemic infection, and inactivation of TCS-17 (also known as RgfAC) resulted in hypervirulence. Our data suggest a role for the previously unknown TCS-16, here named FspSR, in bacterial fitness and carbon metabolism during host colonization, and the data also provide experimental evidence for TCS-17/RgfAC involvement in virulence.


Identification of a Novel LysR-Type Transcriptional Regulator in Staphylococcus aureus That Is Crucial for Secondary Tissue Colonization during Metastatic Bloodstream Infection.

  • Michaela Groma‎ et al.
  • mBio‎
  • 2020‎

Staphylococcus aureus is a common cause of bacteremia that can lead to severe complications once the bacteria exit the bloodstream and establish infection in secondary organs. Despite its clinical relevance, little is known about the bacterial factors facilitating the development of these metastatic infections. Here, we used an S. aureus transposon mutant library coupled to transposon insertion sequencing (Tn-Seq) to identify genes that are critical for efficient bacterial colonization of secondary organs in a murine model of metastatic bloodstream infection. Our transposon screen identified a LysR-type transcriptional regulator (LTTR), which was required for efficient colonization of secondary organs such as the kidneys in infected mice. The critical role of LTTR in secondary organ colonization was confirmed using an isogenic mutant deficient in the expression of LTTR. To identify the set of genes controlled by LTTR, we used an S. aureus strain carrying the LTTR gene in an inducible expression plasmid. Gene expression analysis upon induction of LTTR showed increased transcription of genes involved in branched-chain amino acid biosynthesis, a methionine sulfoxide reductase, and a copper transporter as well as decreased transcription of genes coding for urease and components of pyrimidine nucleotides. Furthermore, we show that transcription of LTTR is repressed by glucose, is induced under microaerobic conditions, and required trace amounts of copper ions. Our data thus pinpoints LTTR as an important element that enables a rapid adaptation of S. aureus to the changing host microenvironment.IMPORTANCEStaphylococcus aureus is an important pathogen that can disseminate via the bloodstream and establish metastatic infections in distant organs. To achieve a better understanding of the bacterial factors facilitating the development of these metastatic infections, we used in this study a Staphylococcus aureus transposon mutant library in a murine model of intravenous infection, where bacteria first colonize the liver as the primary infection site and subsequently progress to secondary sites such as the kidney and bones. We identified a novel LysR-type transcriptional regulator (LTTR), which was specifically required by S. aureus for efficient colonization of secondary organs. We also determined the transcriptional activation as well as the regulon of LTTR, which suggests that this regulator is involved in the metabolic adaptation of S. aureus to the host microenvironment found in secondary infection sites.


Liver X Receptors Suppress Activity of Cholesterol and Fatty Acid Synthesis Pathways To Oppose Gammaherpesvirus Replication.

  • P T Lange‎ et al.
  • mBio‎
  • 2018‎

Gammaherpesviruses are oncogenic pathogens that persist in ~95% of the adult population. Cellular metabolic pathways have emerged as important regulators of many viral infections, including infections by gammaherpesviruses that require several lipid synthetic pathways for optimal replication. Liver X receptors (LXRs) are transcription factors that are critical regulators of cellular fatty acid and cholesterol synthesis pathways. Not surprisingly, LXRs are attractive therapeutic targets in cardiovascular disease. Here we describe an antiviral role for LXRs in the context of gammaherpesvirus infection of primary macrophages. We show that type I interferon increased LXR expression following infection. Surprisingly, there was not a corresponding induction of LXR target genes. Rather, LXRs suppressed the expression of target genes, leading to decreased fatty acid and cholesterol synthesis, two metabolic pathways that support gammaherpesvirus replication. This report defines LXR-mediated restriction of cholesterol and lipid synthesis as an intrinsic metabolic mechanism to restrict viral replication in innate immune cells.IMPORTANCE Fatty acid and cholesterol synthesis pathways of the host play important roles in diverse biological systems. Importantly, these two metabolic pathways are also usurped by a number of viruses to facilitate viral replication. In this report, we show that suppression of these pathways by liver X receptors in primary macrophages creates an intrinsic antiviral state that attenuates gammaherpesvirus replication by limiting viral access to the two metabolic pathways.


Brachypodium Phenylalanine Ammonia Lyase (PAL) Promotes Antiviral Defenses against Panicum mosaic virus and Its Satellites.

  • Shankar R Pant‎ et al.
  • mBio‎
  • 2021‎

Brachypodium distachyon has recently emerged as a premier model plant for monocot biology, akin to Arabidopsis thaliana We previously reported genome-wide transcriptomic and alternative splicing changes occurring in Brachypodium during compatible infections with Panicum mosaic virus (PMV) and its satellite virus (SPMV). Here, we dissected the role of Brachypodium phenylalanine ammonia lyase 1 (PAL1), a key enzyme for phenylpropanoid and salicylic acid (SA) biosynthesis and the induction of plant defenses. Targeted metabolomics profiling of PMV-infected and PMV- plus SPMV-infected (PMV/SPMV) Brachypodium plants revealed enhanced levels of multiple defense-related hormones and metabolites such as cinnamic acid, SA, and fatty acids and lignin precursors during disease progression. The virus-induced accumulation of SA and lignin was significantly suppressed upon knockdown of B. distachyonPAL1 (BdPAL1) using RNA interference (RNAi). The compromised SA accumulation in PMV/SPMV-infected BdPAL1 RNAi plants correlated with weaker induction of multiple SA-related defense gene markers (pathogenesis related 1 [PR-1], PR-3, PR-5, and WRKY75) and enhanced susceptibility to PMV/SPMV compared to that of wild-type (WT) plants. Furthermore, exogenous application of SA alleviated the PMV/SPMV necrotic disease phenotypes and delayed plant death caused by single and mixed infections. Together, our results support an antiviral role for BdPAL1 during compatible host-virus interaction, perhaps as a last resort attempt to rescue the infected plant.IMPORTANCE Although the role of plant defense mechanisms against viruses are relatively well studied in dicots and in incompatible plant-microbe interactions, studies of their roles in compatible interactions and in grasses are lagging behind. In this study, we leveraged the emerging grass model Brachypodium and genetic resources to dissect Panicum mosaic virus (PMV)- and its satellite virus (SPMV)-compatible grass-virus interactions. We found a significant role for PAL1 in the production of salicylic acid (SA) in response to PMV/SPMV infections and that SA is an essential component of the defense response preventing the plant from succumbing to viral infection. Our results suggest a convergent role for the SA defense pathway in both compatible and incompatible plant-virus interactions and underscore the utility of Brachypodium for grass-virus biology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: