Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Characterization of the duck enteritis virus UL55 protein.

  • Ying Wu‎ et al.
  • Virology journal‎
  • 2011‎

Characteration of the newly identified duck enteritis virus UL55 gene product has not been reported yet. Knowledge of the protein UL55 can provide useful insights about its function.


Regulation of viral gene expression by duck enteritis virus UL54.

  • Chaoyue Liu‎ et al.
  • Scientific reports‎
  • 2017‎

Duck enteritis virus (DEV) UL54 is a homologue of human herpes simplex virus-1 (HSV-1) ICP27, which plays essential regulatory roles during infection. Our previous studies indicated that DEV UL54 is an immediate-early protein that can shuttle between the nucleus and the cytoplasm. In the present study, we found that UL54-deleted DEV (DEV-ΔUL54) exhibits growth kinetics, a plaque size and a viral DNA copy number that are significantly different from those of its parent wild-type virus (DEV-LoxP) and the revertant (DEV-ΔUL54 (Revertant)). Relative viral mRNA levels, reflecting gene expression, the transcription phase and the translation stage, are also significantly different between DEV-ΔUL54-infected cells and DEV-LoxP/DEV-ΔUL54 (Revertant)-infected cells. However, the localization pattern of UL30 mRNA is obviously changed in DEV-ΔUL54-infected cells. These findings suggest that DEV UL54 is important for virus growth and may regulate viral gene expression during transcription, mRNA export and translation.


Expression and characterization of UL16 gene from duck enteritis virus.

  • Qin He‎ et al.
  • Virology journal‎
  • 2011‎

Previous studies have indicated that the UL16 protein and its homologs from herpesvirus were conserved and played similar roles in viral DNA packaging, virion assembly, budding, and egress. However, there was no report on the UL16 gene product of duck enteritis virus (DEV). In this study, we analyzed the amino acid sequence of UL16 using bioinformatics tools and expressed in Escherichia coli Rosetta (DE3) induced by isopropy1-β-D-thiogalactopyranoside (IPTG). The recombinant protein was produced, purified using a Ni-NTA column and used to generate the polyclonal antibody against UL16. The intracellular distribution of the DEV UL16 product was carried out using indirect immunofluorescence assay.


Expression and characterization of the UL31 protein from duck enteritis virus.

  • Wei Xie‎ et al.
  • Virology journal‎
  • 2009‎

Previous studies indicate that the UL31 protein and its homology play similar roles in nuclear egress of all herpesviruses. However, there is no report on the UL31 gene product of DEV. In this study, we expressed and presented the basic properties of the DEV UL31 product.


Duck Enteritis Virus VP16 Antagonizes IFN-β-Mediated Antiviral Innate Immunity.

  • Yang Li‎ et al.
  • Journal of immunology research‎
  • 2020‎

Duck enteritis virus (DEV) can successfully evade the host innate immune responses and establish a lifelong latent infection in the infected host. However, the study about how DEV escapes host innate immunity is still deficient up to now. In this study, for the first time, we identified a viral protein VP16 by which DEV can obviously downregulate the production of IFN-β in duck embryo fibroblast (DEF). Our results showed that ectopic expression of VP16 decreased duck IFN-β (duIFN-β) promoter activation and significantly inhibited the mRNA transcription of IFN-β. Further study showed that VP16 can also obviously inhibit the mRNA transcription of interferon-stimulated genes (ISGs), such as myxovirus resistance protein (Mx) and interferon-induced oligoadenylate synthetase-like (OASL). Furthermore, we found that this anti-interferon activity of VP16 depended on its N-terminus (aa1-200). Coexpression analysis revealed that VP16 selectively blocked duIFN-β promoter activity at the duIRF7 level rather than duIRF1. Based on the results of coimmunoprecipitation analysis (co-IP) and indirect immunofluorescence assay (IFA), VP16 was able to bind to duck IRF7 (duIRF7) directly, but did not interact with duck IRF1 (duIRF1) in vitro.


Co-localization of and interaction between duck enteritis virus glycoprotein H and L.

  • Daishen Feng‎ et al.
  • BMC veterinary research‎
  • 2018‎

Duck Enteritis Virus (DEV), belonging to the α-herpesvirus subfamily, is a linear double-stranded DNA virus. Glycoprotein H and L (gH and gL), encoded by UL22 and UL1, are conserved in the family of herpesviruses. They play important roles as gH/gL dimers during viral entry into host cells through cell-cell fusion. The interaction between gH and gL has been confirmed in several human herpesviruses, such as Herpes Simplex Virus (HSV), Epstein-Barr virus (EBV) and Human Cytomegalovirus (HCMV). In this paper, we studied the interaction between DEV gH and gL.


Two nuclear localization signals regulate intracellular localization of the duck enteritis virus UL13 protein.

  • Linjiang Yang‎ et al.
  • Poultry science‎
  • 2021‎

Duck enteritis virus (DEV) multifunctional tegument protein UL13 is predicted to be a conserved herpesvirus protein kinase; however, little is known about its subcellular localization signal. In this study, through transfection of 2 predicted nuclear signals of DEV UL13 fused to enhanced green fluorescent protein, 2 bipartite nuclear localization signals (NLS) were identified. We found that ivermectin blocked the NLS-mediated nuclear import of DEV UL13, showing that the nuclear localization signal of DEV UL13 is a classical importin α- and β-dependent process. We constructed a DEV UL13 mutant strain in which the NLS of DEV UL13 was deleted to explore whether deletion of the NLS affects viral replication. Amino acids 4 to 7 and 90 to 96 were predicted to be NLSs, further proving that nuclear import occurs via a classical importin α- and β-dependent process. We also found that the NLS of pUL13 had no effect on DEV replication in cell culture. Our study enhances the understanding of DEV pUL13. Taken together, these results provide significant information regarding the biological function of pUL13 during DEV infection.


Duck enteritis virus UL21 is a late gene encoding a protein that interacts with pUL16.

  • Linjiang Yang‎ et al.
  • BMC veterinary research‎
  • 2020‎

pUL21 is a conserved protein of Alphaherpesvirinae that performs multiple important functions. The C-terminus of pUL21 in other members of this subfamily has RNA-binding ability; this domain contributes to pseudorabies virus (PRV) retrograde axonal transport in vitro and in vivo and participates in newly replicated viral DNA packaging and intracellular virus transport. However, knowledge regarding duck enteritis virus (DEV) pUL21 is limited.


Expressing gK gene of duck enteritis virus guided by bioinformatics and its applied prospect in diagnosis.

  • Shunchuan Zhang‎ et al.
  • Virology journal‎
  • 2010‎

Duck viral enteritis, which is caused by duck enteritis virus (DEV), causes significant economic losses in domestic and wild waterfowls because of the high mortality and low egg production rates. With the purpose of eliminating this disease and decreasing economic loss in the commercial duck industry, researching on glycoprotein K (gK) of DEV may be a new kind of method for preventing and curing this disease. Because glycoproteins project from the virus envelope as spikes and are directly involved in the host immune system and elicitation of the host immune responses, and also play an important role in mediating infection of target cells, the entry into cell for free virus and the maturation or egress of virus. The gK is one of the major envelope glycoproteins of DEV. However, little information correlated with gK is known, such as antigenic and functional characterization.


Molecular characterization of duck enteritis virus CHv strain UL49.5 protein and its colocalization with glycoprotein M.

  • Meng Lin‎ et al.
  • Journal of veterinary science‎
  • 2014‎

The UL49.5 gene of most herpesviruses is conserved and encodes glycoprotein N. However, the UL49.5 protein of duck enteritis virus (DEV) (pUL49.5) has not been reported. In the current study, the DEV pUL49.5 gene was first subjected to molecular characterization. To verify the predicted intracellular localization of gene expression, the recombinant plasmid pEGFP-C1/pUL49.5 was constructed and used to transfect duck embryo fibroblasts. Next, the recombinant plasmid pDsRed1-N1/ glycoprotein M (gM) was produced and used for co-transfection with the pEGFP-C1/pUL49.5 plasmid to determine whether DEV pUL49.5 and gM (a conserved protein in herpesviruses) colocalize. DEV pUL49.5 was thought to be an envelope glycoprotein with a signal peptide and two transmembrane domains. This protein was also predicted to localize in the cytoplasm and endoplasmic reticulum with a probability of 66.7%. Images taken by a fluorescence microscope at different time points revealed that the DEV pUL49.5 and gM proteins were both expressed in the cytoplasm. Overlap of the two different fluorescence signals appeared 12 h after transfection and continued to persist until the end of the experiment. These data indicate a possible interaction between DEV pUL49.5 and gM.


Establishment of real-time quantitative reverse transcription polymerase chain reaction assay for transcriptional analysis of duck enteritis virus UL55 gene.

  • Ying Wu‎ et al.
  • Virology journal‎
  • 2011‎

Real-time quantitative reverse transcription polymerase chain reaction assay (qRT-PCR) has become the benchmark for detection and quantification of target gene expression level and been utilized increasingly in detection of viral load and therapy monitoring. The dynamic transcription variation of duck enteritis virus UL55 gene during the life cycle of duck enteritis virus in infected cells has not been reported yet.


Downregulation of microRNA-30a-5p contributes to the replication of duck enteritis virus by regulating Beclin-1-mediated autophagy.

  • Xianglong Wu‎ et al.
  • Virology journal‎
  • 2019‎

MicroRNAs (miRNAs) is increasingly recognized as an important element in regulating virus-host interactions. Our previous results showed that cellular miR-30a-5p was significantly downregulated after duck enteritis virus (DEV) infection cell. However, whehter or not the miR-30a-5p is involved in DEV infection has not been known.


Virulent duck enteritis virus infected DEF cells generate a unique pattern of viral microRNAs and a novel set of host microRNAs.

  • Xianglong Wu‎ et al.
  • BMC veterinary research‎
  • 2018‎

Duck enteritis virus (DEV) belongs to the family Herpesviridae and is an important epornitic agent that causes economic losses in the waterfowl industry. The Chinese virulent (CHv) and attenuate vaccines (VAC) are two different pathogenic DEV strains. MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate gene expression in viral infection. Nonetheless, there is little information on virulent duck enteritis virus (DEV)-encoded miRNAs.


Attenuated Salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge.

  • Xia Yu‎ et al.
  • Veterinary research‎
  • 2012‎

Orally delivered DNA vaccines against duck enteritis virus (DEV) were developed using live attenuated Salmonella typhimurium (SL7207) as a carrier and Escherichia coli heat labile enterotoxin B subunit (LTB) as a mucosal adjuvant. DNA vaccine plasmids pVAX-UL24 and pVAX-LTB-UL24 were constructed and transformed into attenuated Salmonella typhimurium SL7207 resulting SL7207 (pVAX-UL24) and SL7207 (pVAX-LTB-UL24) respectively. After ducklings were orally inoculated with SL7207 (pVAX-UL24) or SL7207 (pVAX-LTB-UL24), the anti-DEV mucosal and systemic immune responses were recorded. To identify the optimum dose that confers maximum protection, we used different doses of the candidate vaccine SL7207 (pVAX-LTB-UL24) during oral immunization. The strongest mucosal and systemic immune responses developed in the SL7207 (pVAX-LTB-UL24) (1011 CFU) immunized group. Accordingly, oral immunization of ducklings with SL7207 (pVAX-LTB-UL24) showed superior efficacy of protection (60-80%) against a lethal DEV challenge (1000 LD50), compared with the limited survival rate (40%) of ducklings immunized with SL7207 (pVAX-UL24). Our study suggests that the SL7207 (pVAX-LTB-UL24) can be a candidate DEV vaccine.


Duck enteritis virus pUL47, as a late structural protein localized in the nucleus, mainly depends on residues 40 to 50 and 768 to 777 and inhibits IFN-β signalling by interacting with STAT1.

  • Tianqiong He‎ et al.
  • Veterinary research‎
  • 2020‎

Duck enteritis virus (DEV) is a member of the Alphaherpesvirinae subfamily. The characteristics of some DEV genes have been reported. However, information regarding the DEV UL47 gene is limited. In this study, we identified the DEV UL47 gene encoding a late structural protein located in the nucleus of infected cells. We further found that two domains of DEV pUL47, amino acids (aa) 40 to 50 and 768 to 777, could function as nuclear localization sequence (NLS) to guide the nuclear localization of pUL47 and nuclear translocation of heterologous proteins, including enhanced green fluorescent protein (EGFP) and beta-galactosidase (β-Gal). Moreover, pUL47 significantly inhibited polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced interferon beta (IFN-β) production and downregulated interferon-stimulated gene (ISG) expression, such as Mx and oligoadenylate synthetase-like (OASL), by interacting with signal transducer and activator of transcription-1 (STAT1).


Chinese goose (Anser cygnoides) CD8a: cloning, tissue distribution and immunobiological in splenic mononuclear cells.

  • Qiurong Zhao‎ et al.
  • Gene‎
  • 2013‎

CD8 molecule is a cell membrane glycoprotein, which plays an important role in cell-mediated immunity. Here, we identified Chinese goose CD8α (goCD8α) gene for the first time. The full-length cDNA of goCD8α is 1459bp in length and contains a 711bp open reading frame. Phylogenetic analysis shows that the waterfowl CD8α formed a monophyletic group. Semi-quantitative RT-PCR analysis showed that transcripts of goCD8α mRNA were high in the immune-related organs and mucosal immune system in gosling, and high in thymus and spleen comparing to other immune-related tissues in goose. The obvious increase of CD8α expression was observed in spleen of acute new type gosling viral enteritis virus (NGVEV) infected bird, while the increase of CD8α were observed in the thymus, bursa of fabricius, and cecum of chronic infected bird. The CD8α mRNA transcription level in spleen mononuclear cells was significantly up-regulated when stimulated by phytohemagglutinin, but not by lipopolysaccharide in vitro.


Molecular cloning, tissue distribution, and immune function of goose TLR7.

  • Yulin Qi‎ et al.
  • Immunology letters‎
  • 2015‎

TLR7 is a transmembrane endosomal protein that plays an essential role in innate antiviral responses via the recognition of conserved viral molecular patterns. Here, we cloned the full-length cDNA of goose TLR7 and carried out a molecular characterization of goose TLR7. The goose TLR7 gene is 3900 bp and encodes a 1045 amino acid protein with high homology to poultry (93% to duck and 83% to chicken). Similar conclusions were made by phylogenetic analysis. The predicted protein secondary structure of goose TLR7 contained a conserved Toll/interleukin-1 receptor domain and characteristic leucine-rich repeat regions, which has also been reported for duck TLR7. Additionally, the tissue distribution of goose TLR7 suggests that immune-associated tissues, especially the cecal tonsil and bursa of Fabricius, have high goose TLR7 expression levels. Goose TLR7 is abundantly expressed in lung tissues, which is distinct from its expression in chickens. Similar to duck TLR7, goose spleen mononuclear cells (MNCs) exposed to the mammalian TLR7 agonists R848 and Imiquimod showed significant induction of the production of proinflammatory cytokines and IFN-α. New type gosling viral enteritis virus (NGVEV) infection resulted in high mRNA expression levels of goose TLR7 in the spleen. By contrast, no direct interaction between NGVEV and goose TLR7 was detected after infecting goose spleen MNCs with NGVEV in vitro. However, triggering of goose TLR7 resulted in the rapid up-regulation of proinflammatory cytokines and anti-viral molecules, suggesting that goose TLR7 plays an important role in anti-viral defense.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: