2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Effects of exercise mode, energy, and macronutrient interventions on inflammation during military training.

  • Stefan M Pasiakos‎ et al.
  • Physiological reports‎
  • 2016‎

Load carriage (LC) exercise may exacerbate inflammation during training. Nutritional supplementation may mitigate this response by sparing endogenous carbohydrate stores, enhancing glycogen repletion, and attenuating negative energy balance. Two studies were conducted to assess inflammatory responses to acute LC and training, with or without nutritional supplementation. Study 1: 40 adults fed eucaloric diets performed 90-min of either LC (treadmill, mean ± SD 24 ± 3 kg LC) or cycle ergometry (CE) matched for intensity (2.2 ± 0.1 VO2peak L min(-1)) during which combined 10 g protein/46 g carbohydrate (223 kcal) or non-nutritive (22 kcal) control drinks were consumed. Study 2: 73 Soldiers received either combat rations alone or supplemented with 1000 kcal day(-1) from 20 g protein- or 48 g carbohydrate-based bars during a 4-day, 51 km ski march (~45 kg LC, energy expenditure 6155 ± 515 kcal day(-1) and intake 2866 ± 616 kcal day(-1)). IL-6, hepcidin, and ferritin were measured at baseline, 3-h post exercise (PE), 24-h PE, 48-h PE, and 72-h PE in study 1, and before (PRE) and after (POST) the 4-d ski march in study 2. Study 1: IL-6 was higher 3-h and 24-h post exercise (PE) for CE only (mode × time, P < 0.05), hepcidin increased 3-h PE and recovered by 48-h, and ferritin peaked 24-h and remained elevated 72-h PE (P < 0.05), regardless of mode and diet. Study 2: IL-6, hepcidin and ferritin were higher (P < 0.05) after training, regardless of group assignment. Energy expenditure (r = 0.40), intake (r = -0.26), and balance (r = -0.43) were associated (P < 0.05) with hepcidin after training. Inflammation after acute LC and CE was similar and not affected by supplemental nutrition during energy balance. The magnitude of hepcidin response was inversely related to energy balance suggesting that eating enough to balance energy expenditure might attenuate the inflammatory response to military training.


Military training elicits marked increases in plasma metabolomic signatures of energy metabolism, lipolysis, fatty acid oxidation, and ketogenesis.

  • J Philip Karl‎ et al.
  • Physiological reports‎
  • 2017‎

Military training studies provide unique insight into metabolic responses to extreme physiologic stress induced by multiple stressor environments, and the impacts of nutrition in mediating these responses. Advances in metabolomics have provided new approaches for extending current understanding of factors modulating dynamic metabolic responses in these environments. In this study, whole-body metabolic responses to strenuous military training were explored in relation to energy balance and macronutrient intake by performing nontargeted global metabolite profiling on plasma collected from 25 male soldiers before and after completing a 4-day, 51-km cross-country ski march that produced high total daily energy expenditures (25.4 MJ/day [SD 2.3]) and severe energy deficits (13.6 MJ/day [SD 2.5]). Of 737 identified metabolites, 478 changed during the training. Increases in 88% of the free fatty acids and 91% of the acylcarnitines, and decreases in 88% of the mono- and diacylglycerols detected within lipid metabolism pathways were observed. Smaller increases in 75% of the tricarboxylic acid cycle intermediates, and 50% of the branched-chain amino acid metabolites detected were also observed. Changes in multiple metabolites related to lipid metabolism were correlated with body mass loss and energy balance, but not with energy and macronutrient intakes or energy expenditure. These findings are consistent with an increase in energy metabolism, lipolysis, fatty acid oxidation, ketogenesis, and branched-chain amino acid catabolism during strenuous military training. The magnitude of the energy deficit induced by undereating relative to high energy expenditure, rather than macronutrient intake, appeared to drive these changes, particularly within lipid metabolism pathways.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: